Skip to main content
Log in

Designing Co7Fe3@TiO2 Core–Shell Nanospheres for Electromagnetic Wave Absorption in S and C Bands

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Ferromagnetic-dielectric nanocomposites have attracted extensive interests for its high electromagnetic wave absorption (EMA) performance due to the synergetic effects between different components. Herein, we report the design of core–shell structured Co7Fe3@TiO2 composite particles, which are subsequently annealed in H2/Ar atmosphere to further improve its EMA performance. The introducing of TiO2 dielectric shell together with hydrogen annealing contributes greatly to the electromagnetic properties due to the increased conductivity and enhanced ferromagnetic resonance. Excellent EMA performance is achieved in S (2–4 GHz) and C (4–8 GHz) bands in coatings using Co7Fe3@TiO2 as absorbents. Apart from the high EMA efficiency, the location of EMA band can be tailored in a wide range through regulating the coating thickness. Specifically, an effective absorption band of 2.0 GHz in C band at a thickness of 2.62 mm, and an effective absorption band of 1.7 GHz are achieved in S band at thicknesses of 4.0–5.0 mm. The excellent electromagnetic properties are ascribed to the effective complementary between dielectric loss and ferromagnetic loss.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Long, C., Xu, B., Han, C., Chen, Z., Guan, J.: Flaky core-shell particles of iron@iron oxides for broadband microwave absorbers in S and C bands. J. Alloys Compd. 709, 735–741 (2017)

    CAS  Google Scholar 

  2. Qin, F., Peng, H.X., Prunier, C., Brosseau, C.: Mechanical-electromagnetic coupling of microwire polymer composites at microwave frequencies. Appl. Phys. Lett. 97, 491 (2010)

    Google Scholar 

  3. Yan, L., Hong, C., Sun, B., Zhao, G., Cheng, Y., Dong, S., Zhang, D., Zhang, X.: In-situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 9, 6320–6331 (2017)

    CAS  Google Scholar 

  4. Zhang, N., Huang, Y., Wang, M., Liu, X., Zong, M.: Design and microwave absorption properties of thistle-like CoNi enveloped in dielectric Ag decorated graphene composites. J. Colloid Interface Sci. 534, 110–121 (2019)

    CAS  Google Scholar 

  5. Wu, G., Zhang, H., Luo, X., Yang, L., Lv, H.: Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber. J. Colloid Interface Sci. 536, 548–555 (2019)

    CAS  Google Scholar 

  6. Wang, L., Wen, B., Bai, X., Liu, C., Yang, H.: Facile and green approach to the synthesis of zeolitic imidazolate framework nanosheet-derived 2D Co/C composites for a lightweight and highly efficient microwave absorber. J. Colloid Interface Sci. 540, 30–38 (2019)

    CAS  Google Scholar 

  7. Corrias, A., Casula, M.F., Falqui, A., Paschina, G.: Evolution of the structure and magnetic properties of FeCo nanoparticles in an alumina aerogel matrix. Chem. Mater. 16, 3130–3138 (2004)

    CAS  Google Scholar 

  8. Arief, I., Biswas, S., Bose, S.: Tuning the shape anisotropy and electromagnetic screening ability of ultra-high magnetic polymer and surfactant-capped FeCo nanorods and nanocubes in soft conducting composites. ACS Appl. Mater. Interfaces 8, 26285–26297 (1944)

    Google Scholar 

  9. Klencsár, Z., Németh, P., Sándor, Z., Horváth, T., Sajó, I.E., Mészáros, S., Mantilla, J., Coaquira, J.A.H., Garg, V.K., Kuzmann, E., Tolnai, G.: Structure and magnetism of Fe-Co alloy nanoparticles. J. Alloys Compd. 674, 153–161 (2016)

    Google Scholar 

  10. Liu, X.G., Geng, D.Y., Ma, S., Meng, H., Tong, M., Kang, D.J., Zhang, Z.D.: Electromagnetic-wave absorption properties of FeCo nanocapsules and coral-like aggregates self-assembled by the nanocapsules. J. Appl. Phys. 104, 064319 (2008)

    Google Scholar 

  11. Thirumal, E., Prabhu, D., Chattopadhyay, K., Ravichandran, V.: Magnetic, electric and dielectric properties of FeCo alloy nanoparticles dispersed in amorphous matrix. Phys. Status Solidi A 207, 2505–2510 (2010)

    CAS  Google Scholar 

  12. Lv, H., Ji, G., Wang, M., Shang, C., Zhang, H., Du, Y.: Hexagonal-cone like of Fe50Co50 with broad frequency microwave absorption: Effect of ultrasonic irradiation time. J. Alloys Compd. 615, 1037–1042 (2014)

    CAS  Google Scholar 

  13. Dung, N.T., Long, N.V., Tam, L.T., Nam, P.H., Tung, L.D., Phuc, N.X., Lu, L.T., Thanh, N.T.K.: High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles. Nanoscale 9, 8952–8961 (2017)

    CAS  Google Scholar 

  14. Guo, Y., Liu, S., Zhang, Z., Dong, S., Wang, H.: Fabrication of ZnO/Fe rod-like core-shell structure as high-performance microwave absorber. J. Alloys Compd. 694, 549–555 (2016)

    Google Scholar 

  15. Yang, P., Zhao, X., Liu, Y., Gu, Y.: Facile, Large-scale, and expeditious synthesis of hollow Co and Co@Fe nanostructures: application for electromagnetic wave absorption. J. Phys. Chem. C 121, 8557–8568 (2017)

    CAS  Google Scholar 

  16. Shi, G.M., Li, Y.F., Ai, L., Shi, F.N.: Two step synthesis and enhanced microwave absorption properties of polycrystalline BaTiO3 coated Ni nanocomposites. J. Alloys Compd. 680, 735–743 (2016)

    CAS  Google Scholar 

  17. Jiang, J., Li, D., Geng, D., An, J., He, J., Liu, W., Zhang, Z.: Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites. Nanoscale 6, 3967–3971 (2014)

    CAS  Google Scholar 

  18. Shi, G., Zhang, B., Wang, X., Fu, Y.: Enhanced microwave absorption properties of core double-shell type Fe@C@BaTiO3 nanocapsules. J. Alloys Compd. 655, 130–137 (2016)

    CAS  Google Scholar 

  19. Zhang, Y., Wang, P., Wang, Y., Qiao, L., Wang, T., Li, F.: Synthesis and excellent electromagnetic wave absorption properties of parallel aligned FeCo@C core-shell nanoflake composites. J. Mater. Chem. C 3, 10813–10818 (2015)

    CAS  Google Scholar 

  20. Li, Z., Zhang, Y., Jiang, S.: Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20, 4765–4769 (2008)

    CAS  Google Scholar 

  21. Wang, F., Deng, R., Wang, J., Wang, Q., Han, Y., Zhu, H., Chen, X., Liu, X.: Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10, 968–973 (2011)

    CAS  Google Scholar 

  22. Zhao, B., Shao, G., Fan, B., Zhao, W., Zhang, S., Guan, K., Zhang, R.: In situ synthesis of novel urchin-like ZnS/Ni3S2@Ni composite with a core-shell structure for efficient electromagnetic absorption. J. Mater. Chem. C 3, 10862–10869 (2015)

    CAS  Google Scholar 

  23. Zhao, B., Zhao, W., Shao, G., Fan, B., Zhang, R.: Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl. Mater. Interfaces 7, 12951–12960 (2015)

    CAS  Google Scholar 

  24. Lu, M., Wang, X., Cao, W., Yuan, J., Cao, M.: Carbon nanotube-CdS core-shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology 27, 065702 (2016)

    Google Scholar 

  25. Zhen, L., Jiang, J.T., Gao, R.S., Xu, C.Y., Shao, W.Z.: Microstructure evolution and electromagnetic properties improvement of Al18B4O33w/Co composite powders through heat-treatment. J. Magn. Magn. Mater. 321, 1290–1294 (2009)

    CAS  Google Scholar 

  26. Chen, N., Jiang, J.T., Xu, C.Y., Yuan, Y., Gong, Y.X., Zhen, L.: Co7Fe3 and Co7Fe3@SiO2 nanospheres with tunable diameters for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9, 21933–21941 (2017)

    CAS  Google Scholar 

  27. Jakob, M., Levanon, H., Kamat, P.V.: Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the fermi level. Nano Lett. 3, 353–358 (2016)

    Google Scholar 

  28. Xu, J., Shi, S., Li, L., Zhang, X., Wang, Y., Chen, X., Wang, J., Lv, L., Zhang, F., Zhong, W.: Structural, optical, and ferromagnetic properties of Co-doped TiO2 films annealed in vacuum. J. Appl. Phys. 107, 053910 (2010)

    Google Scholar 

  29. Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R.C., Wang, C., Zhang, J.Z., Li, Y.: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011)

    CAS  Google Scholar 

  30. Yang, Y., Jin, Q., Mao, D., Qi, J., Wei, Y., Yu, R., Li, A., Li, S., Zhao, H., Ma, Y., Wang, L.: Dually ordered porous TiO2-rGO composites with controllable light absorption properties for efficient solar energy conversion. Adv. Mater. 29, 1604795 (2017)

    Google Scholar 

  31. Choi, H., Park, J.S., Jeong, E., Kim, G.H., Lee, B.R., Kim, S.O., Song, M.H., Woo, H.Y., Kim, J.Y.: Combination of titanium oxide and a conjugated polyelectrolyte for high-performance inverted-type organic optoelectronic devices. Adv. Mater. 23, 2759–2763 (2011)

    CAS  Google Scholar 

  32. Dai, R., Zhang, A., Pan, Z., Al-Enizi, A.M., Elzatahry, A.A., Hu, L., Zheng, G.: Epitaxial growth of lattice-mismatched core-shell TiO2@MoS2 for enhanced lithium-ion storage. Small 12, 2792–2799 (2016)

    CAS  Google Scholar 

  33. Zhang, L., Gao, Z., Liu, C., Zhang, Y., Tu, Z., Yang, X., Yang, F., Wen, Z., Zhu, L., Liu, R., Li, Y.: Synthesis of TiO2 decorated Co3O4 acicular nanowire arrays and their application as an ethanol sensor. J. Mater. Chem. A 3, 2794–2801 (2015)

    CAS  Google Scholar 

  34. Dong, J., Ullal, R., Han, J., Wei, S., Ouyang, X., Dong, J., Gao, W.: Partially crystallized TiO2 for microwave absorption. J. Mater. Chem. A 3, 5285–5288 (2015)

    CAS  Google Scholar 

  35. Liu, P., Huang, Y., Yan, J., Zhao, Y.: Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4, 6362–6370 (2016)

    CAS  Google Scholar 

  36. Wan, G., Yu, L., Peng, X., Wang, G., Huang, X., Zhao, H., Qin, Y.: Preparation and microwave absorption properties of uniform TiO2@C core-shell nanocrystals. RSC Adv. 5, 77443–77448 (2015)

    CAS  Google Scholar 

  37. Liu, J., Che, R., Chen, H., Zhang, F., Xia, F., Wu, Q., Wang, M.: Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8, 1214–1221 (2012)

    CAS  Google Scholar 

  38. Liu, J., Xu, J., Che, R., Chen, H., Liu, M., Liu, Z.: Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. Chem. Eur. J 19, 6746–6752 (2013)

    CAS  Google Scholar 

  39. Zhu, C.L., Zhang, M.L., Qiao, Y.J., Xiao, G., Zhang, F., Chen, Y.J.: Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 114, 16229–16235 (2010)

    CAS  Google Scholar 

  40. Sun, N., Du, B., Liu, F., Si, P., Zhao, M., Zhang, X., Shi, G.: Influence of annealing on the microwave-absorption properties of Ni/TiO2 nanocomposites. J. Alloys Compd. 577, 533–537 (2013)

    CAS  Google Scholar 

  41. Deng, J., Wang, Q., Zhou, Y., Zhao, B., Zhang, R.: Facile design of a ZnO nanorod-Ni core-shell composite with dual peaks to tune its microwave absorption properties. RSC Adv. 7, 9294–9302 (2017)

    CAS  Google Scholar 

  42. Wu, P., Du, N., Zhang, H., Yu, J., Yang, D.: Carbon nanocapsules as nanoreactors for controllable synthesis of encapsulated iron and iron oxides: magnetic properties and reversible lithium storage. J. Phys. Chem. C 115, 3612–3620 (2016)

    Google Scholar 

  43. Li, X., Feng, J., Du, Y., Bai, J., Fan, H., Zhang, H., Peng, Y., Li, F.: One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3, 5535–5546 (2015)

    CAS  Google Scholar 

  44. Chen, N., Jiang, J.T., Yuan, Y., Liu, C., Xu, C.Y., Zhen, L.: Effects of microstructure and filling ratio on electromagnetic properties of Co microspheres. J. Magn. Magn. Mater. 421, 368–376 (2017)

    CAS  Google Scholar 

  45. Fu, L.S., Jiang, J.T., Xu, C.Y., Gong, Y.X., Zhen, L.: Synthesis and electromagnetic properties of Fe/SiO2 yolk/shell nanospheres with improved oxidation resistance. Micro Nano Lett. 8, 349–352 (2013)

    CAS  Google Scholar 

  46. Zhang, H., Xie, A., Wang, C., Wang, H., Shen, Y., Tian, X.: Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption. J. Mater. Chem. A 1, 8547–8552 (2013)

    CAS  Google Scholar 

  47. Youngs, I.J., Bowler, N., Ugurlu, O.: Dielectric relaxation in composites containing electrically isolated particles with thin semi-continuous metal coatings. J. Phys. D: Appl. Phys. 39, 1312–1325 (2006)

    CAS  Google Scholar 

  48. Youngs, I.J., Bowler, N., Lymer, K.P., Hussain, S.: Dielectric relaxation in metal-coated particles: the dramatic role of nano-scale coatings. J. Phys. D: Appl. Phys. 38, 188–201 (2005)

    CAS  Google Scholar 

  49. Zhao, B., Guo, X., Zhao, W., Deng, J., Fan, B., Shao, G., Bai, Z., Zhang, R.: Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10, 331–343 (2017)

    CAS  Google Scholar 

  50. Che, R.C., Peng, L.M., Duan, X.F., Chen, Q., Liang, X.L.: Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004)

    CAS  Google Scholar 

  51. Wang, X., Xu, X., Gong, W., Feng, Z., Gong, R.: Electromagnetic properties of Fe-Si-Al/BaTiO3/Nd2Fe14B particulate composites at microwave frequencies. J. Appl. Phy. 115, 07A338 (2014)

    Google Scholar 

  52. Wang, L., Xing, H., Gao, S., Ji, X., Shen, Z.: Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 5, 2005–2014 (2017)

    Google Scholar 

  53. Lu, B., Huang, H., Dong, X.L., Zhang, X.F., Lei, J.P., Sun, J.P., Dong, C.: Influence of alloy components on electromagnetic characteristics of core/shell-type Fe-Ni nanoparticles. J. Appl. Phy. 104, 114313 (2008)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51201048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Tang Jiang or Cheng-Yan Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Jiang, JT., Guan, ZJ. et al. Designing Co7Fe3@TiO2 Core–Shell Nanospheres for Electromagnetic Wave Absorption in S and C Bands. Electron. Mater. Lett. 16, 413–423 (2020). https://doi.org/10.1007/s13391-020-00234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00234-z

Keywords

Navigation