Skip to main content
Log in

Thermoresponsive Nanogels from Dendronized Copolymers for Complexation, Protection and Release of Nucleic Acids

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A series of thermoresponsive cationic dendronized copolymers and their corresponding nanogels containing dendritic oligoethylene glycol (OEG) units and guanidine groups were prepared, and their complexation, protection, and release of nucleic acids were investigated. The dendritic OEGs endow these copolymer materials with good biocompatibility and characteristic thermoresponsiveness, while cationic guanidine groups can efficiently bind with the nucleic acids. The dendritic topology also affords the copolymers specific shielding effect which plays an essential role in protecting the activity of nucleic acids. At room temperature, dendronized copolymers and the corresponding nanogels could efficiently capture and condense the nucleic acids, while above their cloud points (Tcps), more than 75% of siRNA could be released in 1 h triggered by ATP. More importantly, the copolymer showed protective capability to siRNA, while nanogels exhibit even better protection when compared to the copolymers due to the synergetic effect from the three-dimensional cross-linked network and high density of dendritic units in vicinity. This kind of smart dendronized copolymer nanogels form a novel class of scaffolds as promising materials for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zan, G.; Wu, Q. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv. Mater.2016, 28, 2099–2147.

    Article  CAS  Google Scholar 

  2. Trzebicka, B.; Szweda, R.; Kosowski, D.; Szweda, D.; Otulakowski, Ł.; Haladjova, E.; Dworak, A. Thermoresponsive polymerpeptide/protein conjugates. Prog. Polym. Sci.2017, 68, 35–76.

    Article  CAS  Google Scholar 

  3. Wu, Y.; Ng, D. Y.; Kuan, S. L.; Weil, T. Protein-polymer therapeutics: a macromolecular perspective. Biomater. Sci.2015, 3, 214–230.

    Article  CAS  Google Scholar 

  4. Zhu, J.; Zhang, Y.; Lu, D.; Zare, R. N.; Ge, J.; Liu, Z. Temperature-responsive enzyme-polymer nanoconjugates with enhanced catalytic activities in organic media. Chem. Commun.2013, 49, 6090–6092.

    Article  CAS  Google Scholar 

  5. Wang, B.; Ma, R.; Liu, G.; Li, Y.; Liu, X.; An, Y.; Shi, L. Glucose-responsive micelles from self-assembly of poly(ethylene glycol)-b-poly(acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir2009, 25, 12522–12528.

    Article  CAS  Google Scholar 

  6. Liu, J.; Pang, Y.; Huang, W.; Zhu, Z.; Zhu, X.; Zhou, Y.; Yan, D. Redox-responsive polyphosphate nanosized assemblies: a smart drug delivery platform for cancer therapy. Biomacromolecules2011, 12, 2407–2415.

    Article  CAS  Google Scholar 

  7. Mogaki, R.; Hashim, P. K.; Okuro, K.; Aida, T. Guanidinium-based “molecular glues” for modulation of biomolecular functions. Chem. Soc. Rev.2017, 46, 6480–6491.

    Article  CAS  Google Scholar 

  8. Yu, S.; Chen, J.; Dong, R.; Su, Y.; Ji, B.; Zhou, Y.; Zhu, X.; Yan, D. Enhanced gene transfection efficiency of PDMAEMA by incorporating hydrophobic hyperbranched polymer cores: effect of degree of branching. Polym. Chem.2012, 3, 3324–3329.

    Article  CAS  Google Scholar 

  9. Yang, J.; Zhang, Q.; Chang, H.; Cheng, Y. Sufaace-engineered dendrimers in gene delivery. Chem. Rev.2015, 115, 5274–300.

    Article  CAS  Google Scholar 

  10. Feng, C.; Huang, X. Polymer brushes: efficient synthesis and applications. Acc. Chem. Res.2018, 51, 2314–2323.

    Article  CAS  Google Scholar 

  11. Huang, X.; Yin, Y.; Tang, Y.; Bai, X.; Zhang, Z.; Xu, J.; Liu, J.; Shen, J. Smart microgel catalyst with modulatory glutathione peroxidase activity. Soft Matter2009, 5, 1905–1911.

    Article  CAS  Google Scholar 

  12. Liu, F.; Cui, Y.; Wang, L.; Wang, H.; Yuan, Y.; Pan, J.; Chen, H.; Yuan, L. Temperature-responsive poly(N-sopropylacrylamide) modified gold nanoparticle-protein conjugates for bioactivity modulation. ACS Appl. Mater. Interfaces2015, 7, 11547–11554.

    Article  CAS  Google Scholar 

  13. Li, F.; Gao, Q.; Yang, M.; Guo, W. Regulation of catalytic DNA activities with thermosensitive gold nanoparticle surfaces. Langmuir2018, 34, 14932–14939.

    Article  CAS  Google Scholar 

  14. Yoshimatsu, K.; Lesel, B. K.; Yonamine, Y.; Beierle, J. M.; Hoshino, Y.; Shea, K. J. Temperature-responsive “catch and release” of proteins by using multifunctional polymer-based nanoparticles. Angew. Chem. Int. Ed.2012, 51, 2405–2408.

    Article  CAS  Google Scholar 

  15. Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P. W. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev.2014, 43, 1734–1787.

    Article  CAS  Google Scholar 

  16. Shi, H.; Liu, Y.; Qu, R.; Li, Y.; Ma, R.; An, Y.; Shi, L. A facile one-pot method to prepare peroxidase-like nanogel artificial enzymes for highly efficient and controllable catalysis. Colloid Surf. B-Biointerfaces2019, 174, 352–359.

    Article  CAS  Google Scholar 

  17. Schlüter, A. D.; Rab, J. P. Dendronized polymers: synthesis, characterization, assembly at interfaces, and manipulation. Angew. Chem. Int. Ed.2000, 39, 864–883.

    Article  Google Scholar 

  18. Chen, Y.; Xiong, X. Tailoring dendronized polymers. Chem. Commun.2010, 46, 5049–5060.

    Article  CAS  Google Scholar 

  19. Fuhrmann, G.; Grotzky, A.; Lukic, R.; Matoori, S.; Luciani, P.; Yu, H.; Zhang, B.; Walde, P.; Schluter, A. D.; Gauthier, M. A.; Leroux, J. C. Sustained gastrointestinal activity of dendronized polymerenzyme conjugates. Nat. Chem.2013, 5, 582–589.

    Article  CAS  Google Scholar 

  20. Zeng, H.; Little, H. C.; Tiambeng, T. N.; Williams, G. A.; Guan, Z. Multifunctional dendronized peptide polymer platform for safe and effective siRNA delivery. J. Am. Chem. Soc.2013, 155, 4962–4965.

    Article  Google Scholar 

  21. Junk, M. J.; Li, W.; Schluter, A. D.; Wegner, G.; Spiess, H. W.; Zhang, A.; Hinderberger, D. EPR spectroscopic characterization of local nanoscopic heterogeneities during the thermal collapse of thermoresponsive dendronized polymers. Angew. Chem. Int. Ed.2010, 49, 5683–5687.

    Article  CAS  Google Scholar 

  22. Liu, L.; Li, W.; Liu, K.; Yan, J.; Hu, G.; Zhang, A. Comblike thermoresponsive polymers with sharp transitions: synthesis, characterization, and their use as sensitive colorimetric sensors. Macromolecules2011, 44, 8614–8621.

    Article  CAS  Google Scholar 

  23. Feng, X.; Liu, J.; Xu, G.; Zhang, X.; Su, X.; Li, W.; Zhang, A. Thermoresponsive double network cryogels from dendronized copolymers showing tunable encapsulation and release of proteins. J. Mater. Chem. B2018, 6, 1903–1911.

    Article  CAS  Google Scholar 

  24. Zhou, C.; Abdel-Rahman, M. A.; Li, W.; Liu, K.; Zhang, A. Thermoresponsive dendronized copolymers for protein recognitions based on biotin-avidin interaction. Chin. Chem. Lett.2017, 28, 832–838.

    Article  CAS  Google Scholar 

  25. Yan, J.; Liu, K.; Li, W.; Shi, H.; Zhang, A. Thermoresponsive dendronized polypeptides showing switchable recognition to catechols. Macromolecules2016, 49, 510–517.

    Article  CAS  Google Scholar 

  26. Stanzl, E. G.; Trantow, B. M.; Vargas, J. R.; Wender, P. A. Fifteen years of cell-penetrating, guanidinium-rich molecular transporters: basic science, research tools, and clinical applications. Acc. Chem. Res.2013, 46, 2944–2954.

    Article  CAS  Google Scholar 

  27. Li, W.; Zhang, A.; Feldman, K.; Walde, P.; Schluter, A. D. Thermoresponsive dendronized polymers. Macromolecules2010, 41, 3659–3667.

    Article  Google Scholar 

  28. Funhoff, A. M.; van Nostrum, C. F.; Lok, M. C.; Fretz, M. M.; Crommelin, D. J. A.; Hennink, W. E. ooly(3-gunnidmopropyl methacrylate): a novel cationic polymer for gene delivery. Bioconjugate Chem.2004, 15, 1212–1220.

    Article  CAS  Google Scholar 

  29. Biltresse, S.; Attolini, M.; Dive, G.; Cordi, A.; Tucker, G. C.; Marchand-Brynaert, J. Novel RGD-like molecules based on the tyrosine template: design, synthesis, and biological evaluation on isolated integrins αvβ3/α∥bβ3 and in cellular adhesion tests. Bioorg. Med. Chem.2004, 12, 5379–5393.

    Article  CAS  Google Scholar 

  30. Li, W.; Zhang, A.; Schluter, A. D. Thermoresponsive dendronized polymers with tunable lower critical solution temperatures. Chem. Commun.2008, 5523–5525.

  31. Ping, Y.; Liu, C.; Zhang, Z.; Liu, K. L.; Chen, J.; Li, J. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Biomaterials2011, 32, 8328–8341.

    Article  CAS  Google Scholar 

  32. Liu, L.; Li, W.; Yan, J.; Zhang, A. Thermoresponsive dendronized polymeric sensors. J. Polym. Sci., Part A: Polym. Chem.2014, 52, 1706–1713.

    Article  CAS  Google Scholar 

  33. Di Virgilio, F. Dr. Jekyll/Mr. Hyde: the dual role of extracellular ATP. J. Auton. Nerv. Syst.2000, 81, 59–63.

    Article  CAS  Google Scholar 

  34. Cheng, Q.; Huang, Y.; Zheng, H.; Wei, T.; Zheng, S.; Huo, S.; Wang, X.; Du, Q.; Zhang, X.; Zhang, H. Y.; Liang, X. J.; Wang, C.; Tang, R.; Liang, Z. The effect of guanidinylation of PEGylated poly(2-aminoethyl methacrylate) on the systemic delivery of siRNA. Biomaterials2013, 34, 3120–3131.

    Article  CAS  Google Scholar 

  35. Okuro, K.; Sasaki, M.; Aida, T. Boronic acid-appended molecular glues for ATP-responsive activity modulation of enzymes. J. Am. Chem. Soc.2016, 138, 5527–5530.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Hongmei Deng from the Instrumental Analysis and Research Center of Shanghai University for her assistance with NMR measurements. This work was financially supported by the National Natural Science Foundation of China (Nos. 21971161, 21971160, and 21574078), Shanghai Pujiang Program (No. 19PJ1403700), and Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Li or Afang Zhang.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Wu, JH., Cao, SJ. et al. Thermoresponsive Nanogels from Dendronized Copolymers for Complexation, Protection and Release of Nucleic Acids. Chin J Polym Sci 38, 1164–1170 (2020). https://doi.org/10.1007/s10118-020-2452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2452-4

Keywords

Navigation