Skip to main content
Log in

Kinetics of Platelet Adhesion to Protein-Coated Surface in Whole Blood Samples at High Flow Rates

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied platelet adhesion to fibrinogen-coated surface in whole blood samples under conditions of high flow rates. The degree of platelet adhesion was evaluated by the intensity of laser light scattered from protein-coated optical surface with adhered platelets. The intensity of adhesion in whole blood samples at high flow rates was by 2.7 (2.4; 4.1) times higher than in platelet-rich plasma samples. Among the factors intensifying platelet adhesion in the whole blood at high flow rates, von Willebrand factor is of utmost importance. At low flow rates, platelet adhesion almost totally depends on platelet—fibrinogen interaction. At high flow rates, the interactions of platelets with both fibrinogen and von Willebrand factor become equally important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avtaeva YN, Mel’nikov IS, Gabbasov ZA. Real-Time recording of platelet adhesion to fibrinogen-coated surface under flow conditions. Bull. Exp. Biol. Med. 2018;165(1):157-160.

    Article  CAS  Google Scholar 

  2. Brouns SLN, van Geffen JP, Heemskerk JWM. High-throughput measurement of human platelet aggregation under flow: application in hemostasis and beyond. Platelets. 2018;29(7):662-669.

    Article  CAS  Google Scholar 

  3. Casa LDC, Ku DN. Thrombus formation at high shear rates. Annu. Rev. Biomed. Eng. 2017;19):415-433.

  4. Faxälv L, Bolin MH, Jager EW, Lindahl TL, Berggren M. Electronic control of platelet adhesion using conducting polymer microarrays. Lab Chip. 2014;14(16):3043-3049.

    Article  Google Scholar 

  5. Jamiolkowski MA, Pedersen DD, Wu WT, Antaki JF, Wagner WR. Visualization and analysis of biomaterial-centered thrombus formation within a defined crevice under flow. Biomaterials. 2016;96:72-83.

    Article  CAS  Google Scholar 

  6. Kent NJ, Basabe-Desmonts L, Meade G, MacCraith BD, Corcoran BG, Kenny D, Ricco AJ. Microfluidic device to study arterial shear-mediated platelet-surface interactions in whole blood: reduced sample volumes and well-characterised protein surfaces. Biomed. Microdevices. 2010;12(6):987-1000.

    Article  CAS  Google Scholar 

  7. Kwak D, Wu Y, Horbett TA. Fibrinogen and von Willebrand’s factor adsorption are both required for platelet adhesion from sheared suspensions to polyethylene preadsorbed with blood plasma. J. Biomed. Mater. Res. A. 2005;74(1):69-83.

    Article  Google Scholar 

  8. Lei KF, Chen KH, Tsui PH, Tsang NM. Real-time electrical impedimetric monitoring of blood coagulation process under temperature and hematocrit variations conducted in a microfluidic chip. PLoS One. 2013;8(10):e76243. https://doi.org/10.1371/journal.pone.0076243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li R, Grosser T, Diamond SL. Microfluidic whole blood testing of platelet response to pharmacological agents. Platelets. 2017;28(5):457-462.

    Article  CAS  Google Scholar 

  10. Lopez-Alonso A, Jose B, Somers M, Egan K, Foley DP, Ricco AJ, Ramström S, Basabe-Desmonts L, Kenny D. Individual platelet adhesion assay: measuring platelet function and antiplatelet therapies in whole blood via digital quantification of cell adhesion. Anal. Chem. 2013;85(13):6497-6504.

    Article  CAS  Google Scholar 

  11. Neeves KB, Maloney SF, Fong KP, Schmaier AA, Kahn ML, Brass LF, Diamond SL. Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates. J. Thromb. Haemost. 2008;6(12):2193-2201.

    Article  CAS  Google Scholar 

  12. Schneider SW, Nuschele S, Wixforth A, Gorzelanny C, Alexander-Katz A, Netz RR, Schneider MF. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Natl Acad. Sci. USA. 2007;104(19):7899-7903.

    Article  CAS  Google Scholar 

  13. Watson MG, Lopez JM, Paun M, Jones SA. A novel dynamic layer-by-layer assembled nano-scale biointerface: functionality tests with platelet adhesion and aggregate morphology influenced by adenosine diphosphate. J. Thromb. Thrombolysis. 2013;36(4):448-457.

    Article  CAS  Google Scholar 

  14. Zhang C, Neelamegham S. Application of microfluidic devices in studies of thrombosis and hemostasis. Platelets. 2017;28(5):434-440.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Avtaeva.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 169, No. 2, pp. 188-192, February, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avtaeva, Y.N., Mel’nikov, I.S., Okhota, S.D. et al. Kinetics of Platelet Adhesion to Protein-Coated Surface in Whole Blood Samples at High Flow Rates. Bull Exp Biol Med 169, 229–232 (2020). https://doi.org/10.1007/s10517-020-04856-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04856-z

Key Words

Navigation