Skip to main content
Log in

Bone diagenesis in archaeological and contemporary human remains: an investigation of bone 3D microstructure and minero-chemical assessment

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The major difficulty to study bone preservation is to define which diagenetic parameters need to be taken into account when any information on environmental conditions is missing. Through this research, we contribute towards understanding the complex interplay of factors that affects human bones during diagenetic process. The work focuses on how organic and mineral components influence each other and how they influence the resulting micro-structural assessment of human bone. The mineral and organic properties of 24 adult human long bones from archaeological to contemporary burials in Milan (Italy) were characterized through different analytical techniques, in relation to the preservation of their microstructure and porosity. The 3D microstructure of the bone tissue was carried out through the use of phase contrast synchrotron radiation computed micro-tomography (SR-μCT). The results show that when diagenesis proceeds, (i) the bone tissue is progressively attacked by microbes; (ii) the diagenetic porosity increases at the expense of vascular ones; (iii) the volumes, diameters, and interconnections of vascular canals are markedly reduced; (iii) the amount of organic and carbonate fraction decreases whereas bone crystallinity and mean crystal length increase; (iv) the Ca/P mole ratio in CHA crystals increases; (v) the anisotropy along c-axis in CHA crystals is lost, resulting in an increase of their domain size. Since the conservation of organic and mineral fractions is variable in relation to bone microstructure within the same period and site, the research points out the needs to perform a multi-analytical approach to characterize the bone diagenesis at different scales of observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Maksoud G, Abdel-Hady M (2011) Effect of burial environment on crocodile bones from Hawara excavation, Fayoum, Egypt. JCH 12:180–189

    Google Scholar 

  • Abdel-Maksoud G, El-Sayed A (2016) Analysis of archaeological bones from different sites in Egypt by a multiple techniques (XRD, EDX, FTIR). Mediterranean Archaeol. Archaeom. 16(2):149–158

    Google Scholar 

  • Amarante A, Ferreira MT, Makhoul C, Vassalo AR, Cunha E, Gonçalves D (2019) Preliminary results of an investigation on postmortem variations in human skeletal mass of buried bones. Sci Justice 59(1:52–57

    Google Scholar 

  • Ambrose SH, Krigbaum J (2003) Bone chemistry and bioarchaeology. J Anthropol Archaeol 22:193–199

    Google Scholar 

  • Arantes TM, Coimbra LMM, Cristovan FH, Arantes TM, Rosa LLM (2018) Synthesis and optimization of colloidal hydroxyapatite nanoparticles by hydrothermal processes. J Braz Chem Soc 29(9):1894–1903

    Google Scholar 

  • Assis S, Keenleyside A, Santos AL, Cardoso FA (2015) Bone diagenesis and its implication for disease diagnosis: the relevance of bone microstructure analysis for tge study of past human remains. Microsc Microanal 21:805–825

    Google Scholar 

  • Beasley MM, Bartelink EJ, Taylor L, Miller RM (2014) Comparison of transmission FTIR, ATR, and DRIFT spectra: implications for assessment of bone bioapatite diagenesis. J Archaeol Sci 46:16–22

    Google Scholar 

  • Beauthier JP, Lefevre P, Meunier M, Orban R, Polet C, Werquin JP, Quatrehomme G (2010) Palatine suture as age indicator: a controlled study in the erderly. J Forensic Sci 55:153–158

    Google Scholar 

  • Bell LS, Skinner MF, Jones SJ (1996) The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Sci Int 82:129–140

    Google Scholar 

  • Bello SM, Parfitt SA, De Groote I, Kennaway G (2013) Investigating experimental knapping damage on an antler hammer: a pilot-study using high-resolution imaging and analytical techniques. J Archaeol Sci 40:4528–4537

    Google Scholar 

  • Berna F, Matthews A, Weiner S (2004) Solubilities of bone mineral from archaeological sites: the recrystallization window. J Archaeol Sci 31:867–882

    Google Scholar 

  • Boaks A, Siwek D, Mortazavi F (2014) The temporal degradation of bone collagen: a histochemical approach. Forensic Sci Int 240:104e110

    Google Scholar 

  • Booth TJ (2016) An investigation into the relationship between funerary treatment and bacterial bioerosion in european archaeological human bone. Archaeom. 58(3):484–499

    Google Scholar 

  • Booth TJ, Madgwick R (2016) New evidence for diverse secondary burial practices in Iron Age Britain: a histological case study. J Archaeol Sci 67:14–24

    Google Scholar 

  • Booth TJ, Redfern RC, Gowland RL (2016) Immaculate conceptions: micro-CT analysis of diagenesis in Romano-British infant skeletons. J Archaeol Sci 74:124–134

    Google Scholar 

  • Boskey A (2003) Bone mineral crystal size. Osteoporos Int 14(suppl 5):s16–s21

    Google Scholar 

  • Bradfield J (2013) Investigating the potential of micro-focus computed tomography in the study of ancient bone tool function: results from actualistic experiments. J Archaeol Sci 40:2606–2613

    Google Scholar 

  • Brady AL, White CD, Longstaffe FJ, Southam G (2008) Investigating intra-bone isotopic variations in bioapatite using IR-laser ablation and micromilling: implications for identifying diagenesis? Palaeogeogr Palaeoclimatol Palaeoecol 266:190–199

    Google Scholar 

  • Brönnimann D, Portmann C, Pichler SL, Booth TJ, Röder B, Vach W, Schibler J, Rentzel P (2018) Contextualising the dead-combining geoarchaeology and osteoanthropology in a new multi-focus approach in bone histotaphonomy. J Archaeol Sci 98:45–58

    Google Scholar 

  • Brooks S, Suchey JM (1990) Skeletal age determination based on the os pubis: a comparison of the Acsadi-Nemeskeri and Suchey-Brooks methods. Hum Evol 5:227–238

    Google Scholar 

  • Brun F, Dreossi D (2010) Efficient curve-skeleton computation for the analysis of biomedical 3D images. Biomed Sci Instrum 46:475–480

    Google Scholar 

  • Brun F, Mancini L, Kasae P, Favretto S, Dreossi D, Tromba G (2010) Pore3D: a software library for quantitative analysis of porous media. Nucl Instrum Methods Phys Res A 615(3):326–332

    Google Scholar 

  • Brun F, Pacilè S, Accardo A, Kourousias G, Dreossi D, Mancini L, Tromba G, Pugliese R (2015) Enhanced and flexible software tools for X-ray computed tomography at the Italian synchrotron radiation facility Elettra. Fund Inf 141:233–243

    Google Scholar 

  • Caruso V, Cummau M, Maderna E, Cappella A, Caudullo G, Scarpulla V, Cattaneo C (2018) A comparative analysis of microscopic alterations in modern and ancient undecalcified and decalcified dry bones. Am J Phys Anthropol 165(2):363–369

    Google Scholar 

  • Castro W, Hoogewerff J, Latkoczy C, Almirall JR (2010) Application of laser ablation (LA-ICP-SF-MS) for the elemental analysis of bone and teeth samples for discrimination purposes. Forensic Sci Int 195(1–3):17–27

  • Cattaneo C, Porta D, Gibelli D, Gamba C (2009) Histological determination of the human origin of bone fragments. J Forensic Sci 54:531–533

    Google Scholar 

  • Cattaneo C, Mazzarelli D, Cappella A, Castoldi E, Mattia M, Poppa P, De Angelis D, Vitello A, Biehler-Gomez L (2018) A modern documented Italian identified skeletal collection of 2127 skeletons: the CAL Milano Cemetery Skeletal Collection. Forensic Sci Int 287:219e.1–219.e5

    Google Scholar 

  • Chadefaux C, Hô AL, Bellot-Gurlet L, Reiche I (2009a) Curve-fitting micro-ATR FTIR studies of the amide I and amide II bands of type I collagen in archaeological bone materials. E-Preservation Sci 6:129–137

    Google Scholar 

  • Chadefaux C, Vignaud C, Chalmin E, Robles-Camacho J, Arroyo-Cabrales J, Johnson E, Reiche I (2009b) Color origin and heat evidence of paleontological bones: case study of blue and gray bones from San Josecito Cave,Mexico. Am Mineral 94:27–33

    Google Scholar 

  • Cheary RW, Coelho A (1992) A fundamental parameters approach to X-ray line-profile fitting. J Appl Crystallogr 25:109–121

    Google Scholar 

  • Child AM (1995a) Towards an understanding of the microbial decomposition of archaeological bone in the burial environment. J Archaeol Sci 22:165–174

    Google Scholar 

  • Child AM (1995b) Microbial taphonomy or archaeological bone. Stud Conserv 40:19–30

    Google Scholar 

  • Collins MJ, Nielsen-Marsh CM, Hiller J, Smith CI, Roberts JP, Prigodich RV, Wess TJ, Csapo J, Millard AR, Turner-Walker G (2002) The survival of organic matter in bone: a review. Archaeom. 44:383–394

    Google Scholar 

  • Cooper DML, Turinsky AL, Sensen CW, Hallgrimsson B (2003) Quantitative 3D analysis of the canal network in cortical bones by micro-computed tomography. J Archaeol Sci 274B:169–179

    Google Scholar 

  • Dal Sasso G, Maritan L, Usai D, Angelini I, Artioli G (2015) Bone diagenesis at the micro-scale: bone alteration patterns during multiple burial phases at Al Khiday (Khartoum, Sudan) between the Early Holocene and the II century AD. Palaeogeogr Palaeoclimatol Palaeoecol 416:30–42

    Google Scholar 

  • Dal Sasso G, Asscher Y, Angelini I, Nodari L, Gilberto A (2018) A universal curve of apatite crystallinity for the assessment of bone integrity and preservation. Sci Rep 8:12025

    Google Scholar 

  • De Carlo F, Gürsoy D, Marone F, Rivers M, Parkinson DY, Khan F, Schwarz N, Vine DJ, Vogt S, Gleber SC, Narayanan S, Newville M, Lanzirotti T, Sun Y, Hong YP, Jacobsen C (2014) Scientific data exchange: a schema for hdf5-based storage of raw and analyzed data. J Synchrotron Radiat 21:1224–1230

    Google Scholar 

  • Evans JA, Chenery CA, Fitzpatrick AP (2006) Bronze age childhood migration ofindividuals near stonehenge, revealed by strontium and oxygen isotope tooth enamel analysis. Archaeom. 8(2):309–321

    Google Scholar 

  • Fernández-Jalvo Y, Andrews P, Pesquero D, Smith C, Marín-Monfort D, Sánchez B, Geigl E-M, Alonso A (2010) Early bone diagenesis in temperate environments. Palaeogeogr Palaeoclimatol Palaeoecol 288(1-4):62–81

    Google Scholar 

  • France CAM, Thomas DB, Doney CR, Madden O (2014) FT-Raman spectroscopy as a method for screening collagen diagenesis in bone. J Archaeol Sci 42:346–355

    Google Scholar 

  • Guarino FM, Angelini F, Vollono C, Orefice C (2006) Bone preservation in human remains from the Terme del Sarno at Pompeii using light microscopy and scanning electron microscopy. J Archaeol Sci 33(4):513–520

    Google Scholar 

  • Hackett CJ (1981) Microscopical focal destruction (tunnels) in exhumed human bones. Med Sci Law 21(4):243–265

    Google Scholar 

  • Han S-H, Kim S-H, Ahn Y-W, Huh G-Y, Kwak D-S, Park D-K, Lee U-Y, Kim Y-S (2009) Microscopic age estimation from the anterior cortex of the femur in Korean adults. J Forensic Sci 54:519–522

    Google Scholar 

  • Hedges REM (2002) Bone diagenesis: an overview of processes. Archaeom. 44:319–328

    Google Scholar 

  • Hedges REM, Millard AP, Pike AWG (1995) Measurements and relationships of diagenetic alteration of bone from three archaeological sites. J Archaeol Sci 22:201–209

    Google Scholar 

  • Hollund HI, Jans MM, Collins MJ, Kars H, Joosten I, Kars SM (2012) What happened here? Bone histology as a tool in decoding the postmortem histories of archaeological bone from Castricum, The Netherlands. Int J Osteoarchaeol 22:537–548

    Google Scholar 

  • Hollund HI, Aariese F, Fernandes R, Jans MME, Kars K (2013) Testing an alternative high-throughput tool for investigating bone diagenesis: FTIR in attenuated total reflection (ATR) mode. Archaeom. 55(3):507–532

    Google Scholar 

  • Hollund HI, Blank M, Sjögren K-G (2018) Dead and buried? Variation in post-mortem histories revealed through histotaphonomic characterisation of human bone from megalithic graves in Sweden. PLoS One 13:e0204662. https://doi.org/10.1371/journal.pone.0204662

    Article  Google Scholar 

  • Huisman H, Ismail-Meyer K, Sageidet BM, Joosten I (2017) Micromorphological indicators for degradation processes in archaeological bone from temperate European wetland sites. J Archaeol Sci 85:13–29

    Google Scholar 

  • Işcan YM, Loth S, Wright R (1984) Age estimation from the rib by phase analysis: white males. J Forensic Sci 29:1094–1104

    Google Scholar 

  • Jackes M, Sherburne R, Lubell D, Barker C, Wayman M (2001) Destruction of microstructure in archaeological bone: a case study from Portugal. Int J Osteoarchaeol 11(6):415–432

    Google Scholar 

  • Jans MM, Nielsen-Marsh C, Smith CI, Collins MJ, Kars H (2004) Characterisation of microbial attack on archaeological bone. J Archaeol Sci 31(1):87–95

    Google Scholar 

  • Keenan SW, Engel AS, Roy A, Bovenkamp-Langlois GL (2015) Evaluating the consequences of diagenesis and fossilization on bioapatite lattice structure and composition. Chem Geol 413:18–27

    Google Scholar 

  • Kendall C, Høier Eriksen AM, Kontopoulos I, Collins MJ, Turner-Walker G (2018) Diagenesis of archaeological bone and tooth. Palaeogeogr Palaeoclimatol Palaeoecol 491:21–37

    Google Scholar 

  • Kerley ER, Ubelaker DH (1978) Revisions in the microscopic method of estimating age at death in human cortical bone. Am J Phys Anthropol 49:545–546

    Google Scholar 

  • Kontopoulos I, Penkman K, Liritzis I, Collins MJ (2019) Bone diagenesis in a Mycenaean secondary burial (Kastrouli, Greece). Archaeol Anthropol Sci 11(10):5213–5230

    Google Scholar 

  • Le Garff E, Mesli V, Delannoy Y, Colard T, De Jonckheere J, Demondion X, Hédouin V (2017a) The precision of micro-tomography in bone taphonomic experiments and the importance of registration. Forensic Sci Int 273:161–167

    Google Scholar 

  • Le Garff E, Mesli V, Delannoy Y, Colard T, Demondion X, Becart A, Hédouin V (2017b) Early post-mortem changes of human bone in taphonomy with μCT. Int J Legal Med 131(3):761–770

    Google Scholar 

  • Lebon M, Müller K, Bahain J, Fröhlich F, Falguères C, Bertrand L, Sandt C, Reiche I (2011) Imaging fossil bone alterations at the microscale by SR-FTIP microspectroscopy. J Anal At Spectrom 26:922–929

    Google Scholar 

  • Lebon M, Zazzo A, Reiche I (2014) Screening in situ bone and teeth preservation by ATR-FTIR mapping. Palaeogeogr Palaeoclimatol Palaeoecol 416:110–119

    Google Scholar 

  • Lebon M, Reiche I, Gallet X, Bellot-Gurlet L, Zazzo A (2016) Rapid quantification of bone collagen content by ATR-FTIR Spectroscopy. Radiocarbon 58:131–145

    Google Scholar 

  • Maggiano IS, Maggiano CM, Clement JG, Thomas CD, Carter Y, Cooper DM (2016) Three-dimensional reconstruction of Haversian systems in human cortical bone using synchrotron radiation-based micro-CT: morphology and quantification of branching and transverse connections across age. J Anat 228(5):719–732

    Google Scholar 

  • Marado LM, Braga C, Fontes L (2018) Bone diagenesis in via XVII inhumations (Bracara Augusta): identification of taphonomic and environmental factors in differential skeletal preservation. Estudos do Quaternário 18:67–76

    Google Scholar 

  • Margariti E, Stathopoulou ET, Sanakis Y, Kotopoulou E, Pavlakis P, Godelitsas A (2019) A geochemical approach to fossilization processes in Miocene vertebrate bones from Sahabi, NE Libya. J Afr Earth Sci 149:1–18

    Google Scholar 

  • Marques MPM, Mamede AP, Vassalo AR, Makhoul C, Cunha E, Gonçalves D, Parker SF, Batista de Carval LAE (2018) Heat-induced bone diagenesis probed by vibrational spectroscopy. Sci Rep 8:15935

    Google Scholar 

  • Marsden I, Pagani C (2008) Milano, Viale Sabotino (MI). Indagini archeologiche. In Notiziario 2006, Milan.

  • Molin G, Salviulo G, Guerriero P (2002) A crystal-chemical study of remains found in the tomb of Giuseppe Tartini (1692-1770). Archaeom. 11(1):107–116

    Google Scholar 

  • Monge G, Carretero MI, Pozo M, Barroso C (2014) Mineralogical changes in fossil bone from Cueva del Angel, Spain: archaeological implications and occurrence of whitlockite. J Archaeol Sci 46:6–15

    Google Scholar 

  • Morales NS, Catella L, Oliva F, Sarmiento PL, Barrientos G (2017) A SEM-based assessment of bioerosion in Late Holocene faunal bone assemblages from the southern Pampas of Argentina. J Archaeol Sci Rep 18:782–791

    Google Scholar 

  • Müller K, Chadefaux C, Thomas N, Reiche I (2011) Microbial attack of archaeological bones versus high concentrations of heavy metals in the burial environment. A case study of animal bones from a mediaeval copper workshop in Paris. Palaeogeogr Palaeoclimatol Palaeoecol 310(1–2):39–51

    Google Scholar 

  • Munch B, Trtik P, Marone F, Stampanoni M (2009) Stripe and ring artifact removal with combined wavelet–Fourier filtering. Opt Express 17:8567–8591

    Google Scholar 

  • Nielsen-Marsh CM, Hedges REM (2000) Patterns of diagenesis in bone I: the effect of site environments. J Archaeol Sci 27:1139–1150

    Google Scholar 

  • Nielsen-Marsh CM, Smith CI, Jans MM, Nord A, Kars H, Collins MJ (2007) Bone diagenesis in the european Holocene II: taphonomic and environmental considerations. J Archaeol Sci 34(9):1523–1531

    Google Scholar 

  • Palacio-Mancheno PE, Larriera AI, Doty SB, Cardoso L, Fritton SP (2014) 3D assessment of cortical bone porosity and tissue mineral density using high-resolution μCT: effects of resolution and threshold method. JBMR 29(1):142–150

    Google Scholar 

  • Person A, Bocherens H, Saliège J-F, Paris F, Zeitoun V, Gérard M (1995) Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. J Archaeol Sci 22:211–221

    Google Scholar 

  • Peyrin F, Dong P, Pacureanu A, Langer M (2014) Micro- and nano-CT for the study of bone ultrastructure. Curr Osteoporos Rep 12:465–474

    Google Scholar 

  • Piga G, Santos-Cubedo A, Solà SM, Brunetti A, Malgosa A, Enzo S (2009) An X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) investigation in human and animal fossil bones from Holocene to Middle Triassic. J Archaeol Sci 36(9):1857–1868

    Google Scholar 

  • Piga G, Santos-Cubedo A, Brunetti A, Piccinini M, Malgosa A, Napolitano E, Enzo S (2011) A multi-technique approach by XRD, XRF, FT-IR to characterize the diagenesis of dinosaur bones from Spain. Palaeogeogr. Palaeoclimatol Palaeoecol 310(1–2):92–107

  • Piga G, Solinas G, Thompson TJU, Brunetti A, Malgosa A, Enzo S (2013) Is X-ray diffraction able to distinguish between animal and human bones? J Archaeol Sci 40:778–785

    Google Scholar 

  • Prieto-Castelló MJ, Hernández del Rincón JP, Pérez-Sirvent C, Alvarez-Jiménez P, Pérez-Cárceles MD, Osuna E, Luna A (2007) Application of biochemical and X-ray diffraction analyses to establish the postmortem interval. Forensic Sci Int 172:112–111

    Google Scholar 

  • Reiche I, Vignaud C, Menu M (2002) The crystallinity of ancient bone and dentine: new insights by transmission electron microscopy. Archaeom. 44:447–459

    Google Scholar 

  • Reiche I, Lebon M, Chadefaux C, Müller K, Le Hô A-S, Gensch M, Schade U (2010) Microscale imaging of the preservation state of 5,000-year-old archaeological bones by synchrotron infrared microspectroscopy. Anal Bioanal Chem 397:2491–2499

    Google Scholar 

  • Robinson S, Nicholson RA, Pollard AM, O’Connor TP (2003) An evaluation of nitrogen porosimetry as a technique for predicting taphonomic durability in animal bone. J Archeol Sci 30:391–403

    Google Scholar 

  • Rogoz A, Sawlowicz Z, Wojtal P (2012) Diagenetic history of woolly mammoth (mammuthus primigenius) skeletal remains from the archaeological site cracow Spadzista Street (B), Southern Poland. PALAIOS 27:541–549

    Google Scholar 

  • Rouge-Maillart C, Vielle B, Jousset N, Chappard D, Telmon N, Cunha C (2009) Development of a method to estimate skeletal age at death in adults using the acetabulum and the auricular surface on a Portuguese population. Forensic Sci Int 188:91–95

    Google Scholar 

  • Ryanskaya AD, Kiseleva DV, Shilovsky OP, Shagalov ES (2019) XRD study of the Permian fossil bone tissue. Powder Diffract 34(S1):S14–S17. https://doi.org/10.1017/S0885715619000174

    Article  Google Scholar 

  • Sannazaro M (2001) La necropoli tardoantica: ricerche archeologiche nei cortili dell’Università cattolica. Vita e Pensiero, Milan, Milano

    Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Google Scholar 

  • Schmahl WW, Kocsis B, Toncala A, Grupe G (2016) Mineralogic characterisation of archaeological bone. In: Grupe G, McGlynn G (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, Heidelberg

    Google Scholar 

  • Smith CI, Faraldos M, Fernández-Jalvo Y (2008) The precision of porosity measurements: effects of sample pre-treatment on porosity measurements of modern and archaeological bone. Palaeogeogr Palaeoclimatol Palaeoecol 266:175–182

    Google Scholar 

  • Soltan N, Kawalilak CE, Cooper DM, Kontulainen SA, Johnston JD (2019) Cortical porosity assessment in the distal radius: a comparison of HR-Pqct measures with Synchrotron-Radiation micro-CT-based measures. Bone 120:439–445

    Google Scholar 

  • Squires KE, Thompson TJU, Islam M, Chamberlain A (2011) The application of histomorphometry and Fourier transform infrared spectroscopy to the analysis of early Anglo-Saxon burned bone. J Archaeol Sci 38:2399e2409

    Google Scholar 

  • Stathopoulou E, Theodoropoulou T, Phoca-Cosmetatou N (2013) Black fish bones in waterlogged deposits: the case of the Neolithic lake settlement of Dispilio, Greece. Archaeofauna 22:51–74

    Google Scholar 

  • Sudarsan K, Young RA (1969) Significant precision in crystal structural details: Holly Springs hydroxyapatite. Acta Cryst B25:1534

    Google Scholar 

  • Szostek K, Stepańczak B, Szczepanek A, Kępa M, Głąb H, Jarosz P, Włodarczak P, Tunia K, Pawlyta J, Paluszkiewicz C, Tylko G (2011) Diagenetic signals from ancient human remains-bioarchaeological applications. Mineralogia 42(2-3):93–112

    Google Scholar 

  • Tripp JA, Squire ME, Hedges REM, Stevens RE (2018) Use of micro-computed tomography imaging and porosity measurements as indicators of collagen preservation in archaeological bone. Palaeogeogr Palaeoclimatol Palaeoecol 511:462–471

    Google Scholar 

  • Trueman CNG, Martill DM (2002) The long-term preservation of bone: the role of bioerosion. Archaeom. 44:371–382

    Google Scholar 

  • Trueman CNG, Behrensmeyer AK, Tuross N, Weiner S (2004) Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. J Archaeol Sci 31:721–739

    Google Scholar 

  • Trueman CN, Privat K, Field J (2008) Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeogr Palaeoclimatol Palaeoecol 266:160–167

    Google Scholar 

  • Turner-Walker G (2012) Early bioerosion in skeletal tissues: persistence through deep time. Neues Jahrb Geol Palaontol Abh 265(2):165–183

    Google Scholar 

  • Turner-Walker G, Jans MM (2008) Reconstructing taphonomic histories using histological analysis. Palaeogeogr Palaeoclimatol Palaeoecol 266:227–235

    Google Scholar 

  • Turner-Walker G, Syversen U (2002) Quantifying histological changes in archaeological bones using BSE-SEM image analysis. Archaeom. 44:461–468

    Google Scholar 

  • Turner-Walker G, Nielsen-Marsh CM, Syversen U, Kars H, Collins MJ (2002) Sub-micron spongiform porosity is the major ultra-structural alteration occurring in archaeological bone. Int J Osteoarchaeol 12:407–414

    Google Scholar 

  • Wei M, Ruys AJ, Milthorpe BK, Sorrell CC (1999) Solution ripening of hydroxyapatite nanoparticles: effects on electrophoretic deposition. J Biomed Mater Res 45(1):11–19

    Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

    Google Scholar 

  • White L, Booth TJ (2014) The origin of bacteria responsible for bioerosion to the internal bone microstructure: results from experimentally-deposited pig carcasses. Forensic Sci Int 239:92–102

    Google Scholar 

  • Wilson LYN, Pollard AM (2002) Here today, gone tomorrow? Integrated experimentation and geochemical modeling in studies of archaeological diagenetic change. Acc Chem Res 35:644–651

    Google Scholar 

  • Winer S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci 17(2):187–196

    Google Scholar 

  • Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25(2):131–143

    Google Scholar 

  • Young RA (1993) The Rietveld method, Oxford University Press.

Download references

Acknowledgments

The authors would like to thank all staff of SYRMEP beamline at the Elettra synchrotron facility during data collection and the staff of EMP and XRD laboratories of Università degli studi di Milano, Dipartimento di Scienze della Terra “Ardio Desio,” for their precious technical support for data collection.

Funding

This work was supported by Fondazione Fratelli Confalonieri, Milan (Italy).

Author information

Authors and Affiliations

Authors

Contributions

VC and NM wrote the main manuscript text. LP and AP assisted in data interpretation and revision of the manuscript. VC and VD performed EMP analysis and interpreted the results. VC and LT performed SEM analysis and elaborated the data. VC, NM, and MC performed XRD and elaborated the data. VC and CC elaborate the data of OM. VC, NM, and LM performed SR-μCT analysis and interpreted the results. VC and FB performed FT-IR analysis and elaborated the data. All authors reviewed the manuscript.

Corresponding author

Correspondence to Valentina Caruso.

Ethics declarations

Archaeological human bones were provided by LABANOF, Laboratorio di Antropologia e Odontologia Forense, of Università degli Studi di Milano (Milan, Italy), in accordance with Soprintendenza Archeologica Belle Arti e Paesaggio per la città metropolitana di Miano (Italy). Contemporary bones were provided in accordance with the Police Mortuary Rules (DPR 09.10.90 n8 285, art. 43) and thanks to an agreement between the municipality of Milan and the Department of Legal Medicine of Università degli Studi di Milano (Milan, Italy), unclaimed human remains can be used for scientific research.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

ESM 2

(DOCX 13 kb)

ESM 3

(DOCX 14 kb)

ESM 4

(DOCX 13 kb)

ESM 5

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruso, V., Marinoni, N., Diella, V. et al. Bone diagenesis in archaeological and contemporary human remains: an investigation of bone 3D microstructure and minero-chemical assessment. Archaeol Anthropol Sci 12, 162 (2020). https://doi.org/10.1007/s12520-020-01090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-020-01090-6

Keywords

Navigation