Skip to main content
Log in

The Effects of Shear Stud Distribution on the Fatigue Behavior of Steel–Concrete Composite Beams

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Over the past few years, composite steel–concrete beams saw numerous applications in bridge construction because of their competitive cost in comparison with non-composite steel or reinforced concrete structures. Bridges, in particular and industrial structures in general, are commonly subjected to cyclic loading of vehicles or operating machines. This made it important to study and investigate the behavior of composite structures under fatigue. In this study, the cyclic loading behavior of simply supported composite beams was analyzed numerically using ANSYS finite element software. Following analysis validation using the experimental literature load–deformation results, the numerical models were used in a parametric study to investigate the response under cyclic loading to varying degree of shear connection between the beam’s concrete slab and steel section. According to finite element simulation results, there was consistent compatibility in terms of stiffness changes with fatigue life, low deflection values, increased fatigue life and a clear delay in reaching the failure under achieving more than 80% of composite action in order to have the optimum performance under fatigue loading. Shear lag phenomenon—which is a good indication of the continuity in strain between concrete slab and steel beam—was also observed, and it had an influence effect on studying the weld region between shear connectors’ body as a target element and top flange of the steel beam in order to achieve the required degree of composite action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Abbreviations

F.E.M.:

Finite element modeling

“S–N” method:

Relationship between the shear stress range and fatigue life of shear connectors

Δτ :

Shear stress amplitude (MPa)

Δ:

Deflection of composite beam (mm)

N :

Number of cycles (× 104)

δ :

Slippage of concrete slab on steel top flange (mm)

η :

Number of cycles at first shear stud failure (× 104)

References

  1. Slutter, R.G.; Fisher, J.W.: Fatigue strength of shear connectors. In: 45th annual meeting of the Highway Research Board, vol. 315, no. 147 (1966)

  2. Siess, C.P.; Viest, I.M.; Newmark, N.M.: Studies of slab and beam highway bridges. Part III, small-scale tests of shear connectors and composite Tbeams. Bulletin 396, University of Illinios, Urbana, Illinios (1952)

  3. Ollgaard, J.G.; Slutter, R.G.; Fisher, J.W.: Shear strength of stud connectors in lightweight and normal weight concrete. Eng. J. Am. Inst. Steel Constr. April 1971 (71-10) (1971)

  4. Hirokazu, F.Y.; Shigeyuki, M.: Static and fatigue strength of studs. In: Iabse Symposium, 199AD, pp. 197–202

  5. Gattesco, N.; Giuriani, E.: Experimental study on stud shear connectors subjected to cyclic loading. J. Constr. Steel Res. (1996). https://doi.org/10.1016/0143-974X(96)00007-7

    Article  Google Scholar 

  6. Yen, J.Y.R.; Lin, Y.; Lai, M.T.: Composite beams subjected to static and fatigue loads. J. Struct. Eng. (1997). https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(765)

    Article  Google Scholar 

  7. Johnson, R.P.: Resistance of stud shear connectors to fatigue. J. Constr. Steel Res. (2000). https://doi.org/10.1016/S0143-974X(99)00082-6

    Article  Google Scholar 

  8. CEN: Eurocode 4: design of composite steel and concrete structures—part 1.1: general rules and rules for buildings. Eur. Comm. Stand. (2004)

  9. Taplin, G.; Grundy, P.: Steel-concrete composite beams under repeated load. In: Proceedings of the Conference: Composite Construction in Steel and Concrete IV, pp. 37–50 (2000). https://doi.org/10.1061/40616(281)4

  10. Hanswille, G.; Porsch, M.; Ustundag, C.: Resistance of headed studs subjected to fatigue loading. J. Constr. Steel Res. (2007). https://doi.org/10.1016/j.jcsr.2006.06.035

    Article  Google Scholar 

  11. Dawood, M.; Rizkalla, S.; Sumner, E.: Fatigue and overloading behavior of steel–concrete composite flexural members strengthened with high modulus CFRP materials. J. Compos. Constr. (2007). https://doi.org/10.1061/(ASCE)1090-0268(2007)11:6(659)

    Article  Google Scholar 

  12. Yu-Hang, W.; Jian-Guo, N.; Jian-Jun, L.: Study on fatigue property of steel–concrete composite beams and studs. J. Constr. Steel Res. (2014). https://doi.org/10.1016/j.jcsr.2013.11.004

    Article  Google Scholar 

  13. Xu, C.; Sugiura, K.: FEM analysis on failure development of group studs shear connector under effects of concrete strength and stud dimension. Eng. Fail. Anal. 35, 343–354 (2013). https://doi.org/10.1016/j.engfailanal.2013.02.023

    Article  Google Scholar 

  14. El-Zohairy, A.; Salim, H.: Behavior of steel–concrete composite beams under fatigue loads. In: Conference Proceedings of the Society for Experimental Mechanics Series, vol. 7 (2018). https://doi.org/10.1007/978-3-319-62831-8_14

  15. Higashiyama, H.; Yoshida, K.; Inamoto, K.; Matsui, S.; Kaido, H.: Fatigue of headed studs welded with improved ferrules under rotating shear force. JCSR 92, 211–218 (2014). https://doi.org/10.1016/j.jcsr.2013.09.012

    Article  Google Scholar 

  16. Ovuoba, B.; Prinz, G.S.: Fatigue capacity of headed shear studs in composite bridge girders. J. Bridge Eng. (2016). https://doi.org/10.1061/(ASCE)BE.1943-5592.0000915

    Article  Google Scholar 

  17. Xu, C.; Su, Q.; Sugiura, K.: Mechanism study on the low cycle fatigue behavior of group studs shear connectors in steel–concrete composite bridges. J. Constr. Steel Res. 138, 196–207 (2017). https://doi.org/10.1016/j.jcsr.2017.07.006

    Article  Google Scholar 

  18. Desayi, P.; Sundara Raja Iyengar, K.T.; Sanjeeva Reddy, T.: Equation for stress-strain curve of concrete confined in circular steel spiral. Matériaux Constr. (1978). https://doi.org/10.1007/bf02473875

    Article  Google Scholar 

  19. Gere, J. M.; Timoshenko, S.P: Mechanics of Materials. PWS Publishing Company, Boston, Massachusetts (1991). https://doi.org/10.1007/978-1-4899-3124-5

  20. AASHTO: AASHTO LRFD bridge. ProQuest Dissertations and Theses, p. 1661 (2012)

  21. AASHTO: Guide Manual for Bridge Element Inspection. Bridge Element Inspection Guide Manual (2011)

  22. AASHTO: AASHTO Bridge Element Inspection Guide Manual. Bridge Element Inspection Guide Manual (2011)

  23. Johnson, R.P.: Loss of interaction in short-span composite beams and plates. J. Constr. Steel Res. 1(2), 11–16 (1981). https://doi.org/10.1016/0143-974X(81)90028-6

    Article  Google Scholar 

  24. Ovuoba, B.; Prinz, G.S.: Investigation of residual fatigue life in shear studs of existing composite bridge girders following decades of traffic loading. Eng. Struct. (2018). https://doi.org/10.1016/j.engstruct.2018.02.018

    Article  Google Scholar 

  25. Lam, D.; El-Lobody, E.: Behavior of headed stud shear connectors in composite beam. J. Struct. Eng. (2005). https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96)

    Article  Google Scholar 

  26. Navr, J.: Eurocode Design Of Composite Concrete, no. 1, pp. 1–6 (2014)

  27. Badie, S.S.; Morgan Girgis, A.F.; Tadros, M.K.; Nguyen, N.T.: Relaxing the stud spacing limit for full-depth precast concrete deck panels supported on steel girders (phase I). J. Bridge Eng. (2010). https://doi.org/10.1061/(asce)be.1943-5592.0000082

    Article  Google Scholar 

  28. Hamilton, R.; Tennyson, S.; Hamilton, W.: Analysis by the transformed-section method. In: ASEE Annual Conference Proceedings (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed I. Hassanin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanin, A.I., Shabaan, H.F. & Elsheikh, A.I. The Effects of Shear Stud Distribution on the Fatigue Behavior of Steel–Concrete Composite Beams. Arab J Sci Eng 45, 8403–8426 (2020). https://doi.org/10.1007/s13369-020-04702-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04702-4

Keywords

Navigation