Skip to main content

Advertisement

Log in

An emerging electrochemically active maricite NaMnPO4 as cathode material at elevated temperature for sodium-ion batteries

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Seeking of scalable sodium-ion battery is essential to curtail the demand of energy storage applications. This work is a breakthrough for developing sodium-ion batteries. Along with this, designing a suitable cathode material of good electrochemical activity for sodium-ion batteries is a tedious challenge in battery community. In order to sort out these issues, maricite NaMnPO4 material is synthesized by simple solid state reaction and employed as a cathode material for sodium-ion batteries. The material has been investigated by X-ray diffraction analysis, FTIR and Raman spectroscopy and transmission electron microscopy. Formation of well-defined crystal structure is observed by the stepwise effect of calcination temperature. The crystalline structure of the as-prepared NaMnPO4 is analyzed by X-ray diffraction analysis. The material is indexed to the orthorhombic system with the space group of Pmnb. Nanosize of the material is confirmed using transmission electron microscopy. An attempt is made to investigate the electrochemical behavior of maricite NaMnPO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asher RC (1959) A lamellar compound of sodium and graphite. J Inorg Nucl Chem 10:238–249

    Article  CAS  Google Scholar 

  • Baggetto L, Marszewski M, GorkaJ Jaroniec M, Veith GM (2013) AlSb thin films as negative electrodes for Li-ion and Na-ion batteries. J Power Sour 243:699–705

    Article  CAS  Google Scholar 

  • Boyadzhieva T, Koleva V, Stoyanova R (2013) Comparative study on the formation of lithium and sodium manganese phospho-olivines. Bulg Chem Commun 45:208–212

    Google Scholar 

  • Boyadzhieva T, Koleva V, Zhecheva E, Nihtianova D, Mihaylov L, Stoyanova R (2015) Competitive lithium and sodium intercalation into sodium manganese phospho-olivine NaMnPO4 covered with carbon black. RSC Adv 5:87694–87705

    Article  CAS  Google Scholar 

  • Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L (2012) Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc 134:20805–20811

    Article  CAS  Google Scholar 

  • Delmas C, Cherkaoui F, Nadiri A, Hagenmuller P (1987) A nasicon-type phase as intercalation electrode: NaTi2(PO4)3. Mater Res Bull 22:631–639

    Article  CAS  Google Scholar 

  • Dong W, Yen SP, Paik JA, Sakamoto J (2009) The role of acetic acid and glycerol in the synthesis of amorphous MgO aerogels. J Am Ceram Soc 92:1011–1016

    Article  CAS  Google Scholar 

  • Elsagh A (2012) Synthesis of Silica nanostructures and optimization of their size and morphology by use of changing in synthesis conditions. J Chem 9:659–668

    CAS  Google Scholar 

  • Fang Y, Qi L, Lifen X, Xinping A, Hanxi Y, Yuliang C (2015) High-performance olivine NaFePO4 microsphere cathode synthesized by aqueous electrochemical displacement method for sodium ion batteries. ACS Appl Mater Interfaces 7:17977–171984

    Article  CAS  Google Scholar 

  • Fernandez-Ropero AJ, Saurel D, Acebedo B, Rojo T, Casas-Cabanas M (2015) Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries. J Power Sour 291:40–45

    Article  CAS  Google Scholar 

  • Hamankiewicz B, Michalska M, Krajewski M, Ziolkowska D, Lipinska L, Korona K, Kaminska M, Czerwinski A (2014) The effect of electrode thickness on electrochemical performance of LiMn2O4 cathode synthesized by modified sol–gel method. Solid State Ion 262:9–13

    Article  CAS  Google Scholar 

  • Kawabe Y, Yabuuchi N, Kajiyama M, Fukuhara N, Inamasu T, OkuyamaR Nakai I, Komaba S (2011) Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochem Commun 13:1225–1228

    Article  CAS  Google Scholar 

  • Khan AH, Ghosh S, Pradhan B, Dalui A, Shrestha LK, Acharya S, Ariga K (2017) Two- dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull Chem Soc Jpn 90:627–648

    Article  Google Scholar 

  • Koleva V, Boyadzhieva T, Zhecheva E, Nihtianova D, Simova S, Tyuliev G, Stoyanova R (2013) Precursor-based methods for low-temperature synthesis of defectless NaMnPO4 with an olivine-and maricite-type structure. Cryst Eng Commun 15:9080–9089

    Article  CAS  Google Scholar 

  • Kuze S, Kageura JI, Matsumoto S, Nakayama T, Makidera M, Saka M,Yamaguchi T, Yamamoto T, Nakane K (2013) Development of a sodium ion secondary battery. Sumitomo Kagaku, 1–13

  • Le Poul N, Emmanuel B, Mathieu M, Sylvain G, Christian M, Tarascon J-M (2003) Development of potentiometric ion sensors based on insertion materials as sensitive element. Solid State Ion 159:149–158

    Article  Google Scholar 

  • Molenda J, Baster D, Molenda M, Swierczek K, Tobola J (2014) Anomaly in the electronic structure of the NaxCoO2-y cathode as a source of its step-like discharge curve. Phys Chem Chem Phys 16:14845–14857

    Article  CAS  Google Scholar 

  • Moring J, Kostiner E (1986) The crystal structure of NaMnPO4. J Solid State Chem 61:379–383

    Article  CAS  Google Scholar 

  • Ni Q, Ying B, Feng W, Chuan W (2017) Polyanion-type electrode materials for sodium-ion batteries. Adv Sci 4:1600275

    Article  Google Scholar 

  • Nithya C, Gopukumar S (2015) Sodium ion batteries: a newer electrochemical storage. Wiley Interdiscipl Rev: Energy Environ Sci 4:253–278

    Article  CAS  Google Scholar 

  • Oswal M, Paul J, Zhao R (2010) A comparative study of lithium-ion batteries. University of Southern California, Los Angeles, pp 1–28

    Google Scholar 

  • Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  • Pan H, HuYS Chen L (2013) Room-temperature stationary sodium-ion batteries for large- scale electric energy storage. Energy Environ Sci 6:2338–2360

    Article  CAS  Google Scholar 

  • Savithiri G, Priyanka V, Subadevi R, Sivakumar M (2020) Effect of downsizing the maricite α-phase sodium cobalt phosphate (α-NaCoPO4) in sodium-ion battery. J Nanopart Res 22:1

    Article  Google Scholar 

  • Shirpou M, Cabana J, Doeff M (2013) New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems. Energy Environ Sci 6:2538–2547

    Article  Google Scholar 

  • Su Q, Lu Y, Liu S, Zhang X, Lin Y, Fu R, Wu D (2018) Nano network-structured yolk-shell FeS2@ C as high-performance cathode materials for Li-ion batteries. Carbon 140:433–440

    Article  CAS  Google Scholar 

  • TangW Song X, Du Y, Peng C, Lin M, Xi S, Tian B, Zheng J, WuY Pan F, Loh KP (2016) High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. J Mater Chem A4:4882–4892

    Article  Google Scholar 

  • Wang C, Shaw LL (2014) On synthesis of Fe2 SiO4/SiO2 and Fe2 O3/SiO2 composites through sol–gel and solid-state reactions. J Sol-Gel Sci Technol 72:602–614

    Article  CAS  Google Scholar 

  • Wang C, Sawicki M, Emani S, Liu C, Shaw LL (2015a) Na3MnCO3PO4—a high capacity, multi-electron transfer redox cathode material for sodium ion batteries. Electrochim Acta 161:322–328

    Article  CAS  Google Scholar 

  • Wang C, Sawicki M, Kaduk JA, Shaw LL (2015b) Roles of processing, structural defects and ionic conductivity in the electrochemical performance of Na3MnCO3PO4 cathode material. J Electrochem Soc 162:A1601

    Article  CAS  Google Scholar 

  • Wu MS, Chiang PCJ, Lin JC (2005) Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements. J Electrochem Soc 152:A47–A52

    Article  CAS  Google Scholar 

  • Xie Y, Yin J, Zheng J, Wang L, Wu J, Dresselhaus M, Zhang X (2019) Synergistic cobalt sulfide/eggshell membrane carbon electrode. ACS Appl Mater Interfaces 11:32244–32250

    Article  CAS  Google Scholar 

  • Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T (2011) Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Physchem Lett 2:2560–2565

    CAS  Google Scholar 

  • Zhang P, Huiqing FAN, Yunfei FU, Zhuo LI, Yongli DENG (2006) Synthesis and electrochemical properties of sol-gel derived LiMn2O4 cathode for lithium-ion batteries. Rare Met 25:100–104

    Article  Google Scholar 

  • Zhang L, Huang T, Yu A (2015) Carbon-coated Na3V2(PO4)3 nanocomposite as a novel high rate cathode material for aqueous sodium ion batteries. J Alloys Compd 646:522–527

    Article  CAS  Google Scholar 

  • Zheng B, Lin X, Zhang X, Wu D, Matyjaszewski K (2019) Emerging functional porous polymeric and carbonaceous materials for environmental treatment and energy storage. Adv Funct Mater, 1907006

  • Zhong Y, Tang Y, Xiang W, Guo X, Zhong B (2015) Micro-nano structure Na2MnPO4 F/C as cathode material with excellent sodium storage properties. Mater Lett 145:269–272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors from Alagappa University acknowledge the financial support by DST- SERB, New Delhi under the Physical sciences, grant sanctioned vide EMR/2016/006302. All the authors acknowledge for the FIST and PURSE schemes of Department of Science and Technology (DST), SAP of University Grants Commission (UGC),New Delhi, India, and Ministry of Human Resource Development RUSA- Phase 2.0 grant sanctioned to Alagappa University, vide Lt.No.F-24-51/2014 U Policy (TN Multi Gen), Dept. of Education, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Subadevi or M. Sivakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyanka, V., Savithiri, G., Subadevi, R. et al. An emerging electrochemically active maricite NaMnPO4 as cathode material at elevated temperature for sodium-ion batteries. Appl Nanosci 10, 3945–3951 (2020). https://doi.org/10.1007/s13204-020-01506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01506-8

Keywords

Navigation