Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The genome insights of Streptomyces lannensis T1317-0309 reveals actinomycin D production

Abstract

The members of Streptomyces have been identified as a major source of antimicrobial agents with broad spectrum. This study is mainly focused on bioactivity-guided isolation and characterization of bioactive molecule from strain Streptomyces sp. T1317-0309 and its whole-genome sequence analysis for possible isolation of novel natural products. Strain Streptomyces sp. T1317-0309 showed 100% sequence similarity with strain Streptomyces lannensis TA4-8T consisting 10, 453,255 bp of genome with 5 scaffolds and 69.9 mol% G + C content. The genome analyses revealed a total of 17 putative biosynthetic gene clusters (BGCs) responsible for various secondary metabolites including actinomycin, bacteriocin, ectoine, melanin, terpene, siderophore, betalactone, NRPS, T2PKS, and T3PKS. The BGC and bioactivity-guided purification of ethyl acetate extract of strain T1317-0309 showed the great potency of antimicrobial activities against various gram-positive multi-drug resistant human pathogens including MRSA. The BGC-predicted bioactive secondary metabolite was identified by various NMR analyses and confirmed as actinomycin D. In addition, this study reveals the first genome study of Streptomyces lannensis as a novel source for actinomycin D.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109:309–18.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dahal RH, Chaudhary DK. Microbial infections and antimicrobial resistance in Nepal: current trends and recommendations. Open Microbiol J. 2018;12:230–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Terra L, et al. A novel alkaliphilic Streptomyces inhibits ESKAPE pathogens. Front Microbiol. 2018;9:2458.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Disco. 2013;12:371–87.

    Article  CAS  Google Scholar 

  5. Dryden MS, et al. Predictors of mortality in Staphylococcus aureus Bacteremia. Clin Microbiol Rev. 2011;25:362–86.

    Google Scholar 

  6. Dahal RH, Shim DS, Kim J. Development of actinobacterial resources for functional cosmetics. J Cosmet Dermatol. 2017;16:243–52.

    Article  PubMed  Google Scholar 

  7. Schneider O, et al. Genome mining of Streptomyces sp. YIM 130001 isolated from lichen affords new thiopeptide antibiotic. Front Microbiol. 2018;9:3139.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lackner H, Bahner I, Shigematsu N, Pannell LK, Mauger AB. Structures of five components of the actinomycin Z complex from Streptomyces fradiae, two of which contain 4-chlorothreonine. J Nat Prod. 2000;63:352–6.

    Article  CAS  PubMed  Google Scholar 

  9. Jones GH. Actinomycin production persists in a strain of Streptomyces antibioticus lacking phenoxazinone synthase. Antimicrob Agents Chemother. 2000;44:1322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharma M, Manhas RK. Purification and characterization of actinomycins from Streptomyces strain M7 active against methicillin resistant Staphylococcus aureus and vancomycin resistant Enterococcus. BMC Microbiol. 2019;19:44.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang X, Ye X, Chai W, Lian X-Y, Zhang Z. New metabolites and bioactive actinomycins from marine-derived Streptomyces sp. ZZ338. Mar Drugs. 2016;14:181.

    Article  PubMed Central  Google Scholar 

  12. Hollstein U, Breitmaier E, Jung G. Carbon-13 nuclear magnetic resonance study of actinomycin D. J Am Chem Soc. 1974;96:8036–40.

    Article  CAS  PubMed  Google Scholar 

  13. Singh SB, Genilloud O, Peláez F. Terrestrial microorganisms – filamentous bacteria. In: Mander L, Lui H-W, editors. Comprehensive natural products II. Oxford: Elsevier; 2010. p. 109–40.

  14. Hu D, et al. Genome guided investigation of antibiotics producing actinomycetales strain isolated from a Macau mangrove ecosystem. Sci Rep. 2018;8:1–12.

    Article  Google Scholar 

  15. Nguyen HT, et al. Streptomyces sp. VN1, a producer of diverse metabolites including non-natural furan-type anticancer compound. Sci Rep. 2020;10:1–14.

    Article  Google Scholar 

  16. Nguyen TM, Seo C, Ji M, Paik MJ, Myung SW, Kim J. Effective soil extraction method for cultivating previously uncultured soil bacteria. Appl Environ Microbiol. 2018;84:e01145–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Frank JA, et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol. 2008;74:2461–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tatusova T, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics. 2018;34:1037–9.

    Article  CAS  PubMed  Google Scholar 

  20. Aziz RK, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33:W686–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017;110:1281–6.

    Article  CAS  PubMed  Google Scholar 

  29. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:60.

    Article  Google Scholar 

  30. CLSI. M07-A10 Methods for dilution antimicrobial susceptibility sests for bacteria that grow aerobically. Approved standard-tenth ed. Wayne, PA: Clinical & Laboratory Standards Institute; 2015. www.clsi.org.

  31. Arhin FF, et al. Effect of polysorbate 80 on oritavancin binding to plastic surfaces: implications for susceptibility testing. Antimicrob Agents Chemother. 2008;52:1597–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci. 2009;106:19126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 2008;36:W181–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mauger AB, Thomas WA. NMR studies of actinomycins varying at the proline sites. Org Magn Reson. 1981;17:186–90.

    Article  CAS  Google Scholar 

  35. Chen C, Song F, Wang Q, Abdel-Mageed WM, Guo H, Fu C, et al. A marine-derived Streptomyces sp. MS449 produces high yield of actinomycin X2 and actinomycin D with potent anti-tuberculosis activity. Appl Microbiol Biotechnol. 2012;95:919–27.

    Article  CAS  PubMed  Google Scholar 

  36. Praveen V, Tripathi CKM, Bihari V, Srivastava SC. Production of actinomycin-D by a new isolate, Streptomyces sindenensis. Ann Microbiol. 2008;58:109–14.

    Article  CAS  Google Scholar 

  37. Praveen V, Tripathi CKM. Studies on the production of actinomycin-D by Streptomyces griseoruber- a novel source. Lett Appl Microbiol. 2009;49:450–5.

    Article  CAS  PubMed  Google Scholar 

  38. Praveen V, Tripathi CKM, Bihari V. Studies on optimum fermentation conditions for actinomycin-D production by two new strains of Streptomyces spp. Med Chem Res. 2008;17:114–22.

    Article  CAS  Google Scholar 

  39. Wei Z, Xu C, Wang J, Lu F, Bie X, Lu Z. Identification and characterization of Streptomyces flavogriseus NJ-4 as a novel producer of actinomycin D and holomycin. PeerJ. 2017;2017:1–19.

    Google Scholar 

  40. Wang D, et al. Identification, bioactivity, and productivity of actinomycins from the marine-derived Streptomyces heliomycini. Front Microbiol. 2017;8:1147.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1F1A1058501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaisoo Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All the authors read, discussed, edited and approved the final draft of the manuscript and consent for publication of this manuscript was obtained.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahal, R.H., Nguyen, T.M., Pandey, R.P. et al. The genome insights of Streptomyces lannensis T1317-0309 reveals actinomycin D production. J Antibiot 73, 837–844 (2020). https://doi.org/10.1038/s41429-020-0343-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0343-0

Search

Quick links