Skip to main content
Log in

Evaluation of Caffeine Degradation by Sequential Coupling of TiO2/O3/H2O2/UV Processes

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This study provides new insight into the implementation and synergy effect of coupling in sequences of the photocatalysis ([TiO2-UVC]), ozone (O3) and hydrogen peroxide (H2O2) applied to degradation and mineralization of a model compound such as caffeine (in synthetic solution and industrial wastewater). The system consists of an annular photoreactor coupled to two venturi valves with a continuous dosage of O3 and H2O2, the combination of binary processes such as O3/H2O2, TiO2/O3 and UVC/H2O2 was evaluated, as well as the coupling of TiO2/O3/H2O2/UVC in order to estimate all the possible synergy effects. It was found that the coupling between photocatalysis and hydrogen peroxide shows a negligible performance of caffeine treatment in both synthetic and real wastewater because the reaction rate, degradation and mineralization of caffeine does not improve considerably compared to the photocatalysis process alone. Meanwhile, the coupling between photocatalysis and ozonation shows the highest synergy effect. The coupling of all the processes evaluated TiO2/O3/H2O2/UVC achieved 100% degradation of caffeine, but the mineralization was lower than photocatalysis coupled with ozonation. This could be due to the peroxide and ozone compete by active sites of the catalyst and can also act as scavengers of oxidizing species, hindering the caffeine mineralization. The results show that the combination of photocatalysis with ozone and peroxide can make a synergy effect for industrial wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Peña-Guzmán C, Ulloa-Sánchez S, Mora K et al (2019) Emerging pollutants in the urban water cycle in Latin America: a review of the current literature. J Environ Manage 237:408–423. https://doi.org/10.1016/j.jenvman.2019.02.100

    Article  CAS  Google Scholar 

  2. Chávez AM, Quiñones DH, Rey A et al (2020) Simulated solar photocatalytic ozonation of contaminants of emerging concern and effluent organic matter in secondary effluents by a reusable magnetic catalyst. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125642

    Article  Google Scholar 

  3. Ling Y, Liao G, Xie Y et al (2016) Coupling photocatalysis with ozonation for enhanced degradation of Atenolol by Ag-TiO2 micro-tube. J Photochem Photobiol A 329:280–286. https://doi.org/10.1016/j.jphotochem.2016.07.007

    Article  CAS  Google Scholar 

  4. Wang Y, Liu H, Liu G et al (2015) Kinetics for diclofenac degradation by chlorine dioxide in aqueous media: Influences of natural organic matter additives. J Taiwan Inst Chem Eng 56:131–137. https://doi.org/10.1016/j.jtice.2015.04.015

    Article  CAS  Google Scholar 

  5. Evaluation A (2018) Photocatalytic degradation of commercial acetaminophen: evaluation, modeling, and scaling-up of photoreactors. Catalysts. https://doi.org/10.3390/catal8050179

    Article  Google Scholar 

  6. Poulios I, Micropoulou E, Panou R, Kostopoulou E (2003) Photooxidation of eosin Y in the presence of semiconducting oxides. Appl Catal B 41:345–355. https://doi.org/10.1016/S0926-3373(02)00160-1

    Article  CAS  Google Scholar 

  7. Lachheb H, Puzenat E, Houas A et al (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B 39:75–90. https://doi.org/10.1016/S0926-3373(02)00078-4

    Article  CAS  Google Scholar 

  8. Toepfer B, Gora A, Lipuma G (2006) Photocatalytic oxidation of multicomponent solutions of herbicides: reaction kinetics analysis with explicit photon absorption effects. Appl Catal B 68:171–180. https://doi.org/10.1016/j.apcatb.2006.06.020

    Article  CAS  Google Scholar 

  9. Kuo WS, Chiang YH, Lai LS (2006) Degradation of carbofuran in water by solar photocatalysis in presence of photosensitizers. J Environ Sci Health Part B 41:937–948. https://doi.org/10.1080/03601230600806137

    Article  CAS  Google Scholar 

  10. Valério A, Wang J, Tong S et al (2020) Synergetic effect of photocatalysis and ozonation for enhanced tetracycline degradation using highly macroporous photocatalytic supports. Chem Eng Process-Process Intensif 149:107838. https://doi.org/10.1016/j.cep.2020.107838

    Article  CAS  Google Scholar 

  11. Pham TD, Lee BK (2015) Disinfection of Staphylococcus aureus in indoor aerosols using Cu-TiO2 deposited on glass fiber under visible light irradiation. J Photochem Photobiol A 307–308:16–22. https://doi.org/10.1016/j.jphotochem.2015.04.002

    Article  CAS  Google Scholar 

  12. Pham TD, Lee BK (2017) Novel photocatalytic activity of Cu@V co-doped TiO2/PU for CO2 reduction with H2O vapor to produce solar fuels under visible light. J Catal 345:87–95. https://doi.org/10.1016/j.jcat.2016.10.030

    Article  CAS  Google Scholar 

  13. Pham TD, Lee BK (2016) Advanced removal of C. famata in bioaerosols by simultaneous adsorption and photocatalytic oxidation of Cu-doped TiO2/PU under visible irradiation. Chem Eng J 286:377–386. https://doi.org/10.1016/j.cej.2015.10.100

    Article  CAS  Google Scholar 

  14. Diaz-Angulo J, Porras J, Mueses M et al (2019) Coupling of heterogeneous photocatalysis and photosensitized oxidation for diclofenac degradation: role of the oxidant species. J Photochem Photobiol A 383:112015. https://doi.org/10.1016/j.jphotochem.2019.112015

    Article  CAS  Google Scholar 

  15. Pham TD, Lee BK (2015) Novel integrated approach of adsorption and photo-oxidation using Ag-TiO2/PU for bioaerosol removal under visible light. Chem Eng J 275:357–365. https://doi.org/10.1016/j.cej.2015.04.055

    Article  CAS  Google Scholar 

  16. Lara-Ramos JA, Sánchez-Gómez K, Valencia-Rincón D et al (2019) Intensification of the O3/TiO2/UV advanced oxidation process using a modified flotation cell. Photochem Photobiol Sci 18:920–928. https://doi.org/10.1039/c8pp00308d

    Article  CAS  Google Scholar 

  17. Dionysiou DD, Suidan MT, Baudin I, Laîné JM (2004) Effect of hydrogen peroxide on the destruction of organic contaminants-synergism and inhibition in a continuous-mode photocatalytic reactor. Appl Catal B 50:259–269. https://doi.org/10.1016/j.apcatb.2004.01.022

    Article  CAS  Google Scholar 

  18. Otálvaro-Marín HL, González-Caicedo F, Arce-Sarria A et al (2019) Scaling-up a heterogeneous H2O2/TiO2/solar-radiation system using the DamkÖhler number. Chem Eng J 364:244–256. https://doi.org/10.1016/j.cej.2019.01.141

    Article  CAS  Google Scholar 

  19. Teodosiu C, Gilca AF, Barjoveanu G, Fiore S (2018) Emerging pollutants removal through advanced drinking water treatment: a review on processes and environmental performances assessment. J Clean Prod 197:1210–1221. https://doi.org/10.1016/j.jclepro.2018.06.247

    Article  CAS  Google Scholar 

  20. Ameta R, Ameta SC (2017) Photocatalysis: principles and applications, 1st edn. CRC Press, London

    Google Scholar 

  21. Rivas FJ, Beltrán FJ, Encinas A (2012) Removal of emergent contaminants: Integration of ozone and photocatalysis. J Environ Manage 100:10–15. https://doi.org/10.1016/j.jenvman.2012.01.025

    Article  CAS  Google Scholar 

  22. Kim SJ, Kim SC, Seo SG et al (2011) Photocatalyzed destruction of organic dyes using microwave/UV/O3/H2O2/TiO2 oxidation system. Catal Today 164:384–390. https://doi.org/10.1016/j.cattod.2010.10.025

    Article  CAS  Google Scholar 

  23. Fernandes A, Gągol M, Makoś P et al (2019) Integrated photocatalytic advanced oxidation system (TiO2/UV/O3/H2O2)for degradation of volatile organic compounds. Sep Purif Technol 224:1–14. https://doi.org/10.1016/j.seppur.2019.05.012

    Article  CAS  Google Scholar 

  24. Sahel K, Elsellami L, Mirali I et al (2016) Hydrogen peroxide and photocatalysis. Appl Catal B 188:106–112. https://doi.org/10.1016/j.apcatb.2015.12.044

    Article  CAS  Google Scholar 

  25. Hossain MK, Mortuza AA, Sen SK et al (2018) A comparative study on the influence of pure anatase and Degussa-P25 TiO2 nanomaterials on the structural and optical properties of dye sensitized solar cell (DSSC) photoanode. Optik (Stuttg) 171:507–516. https://doi.org/10.1016/j.ijleo.2018.05.032

    Article  CAS  Google Scholar 

  26. Diaz J, Gomez-Bonilla I, Jimenez-Tohapanta C et al (2019) Visible-light activation of TiO2 by dye-sensitization for degradation of pharmaceutical compounds. Photochem Photobiol Sci 18:897–904. https://doi.org/10.1039/c8pp00270c

    Article  CAS  Google Scholar 

  27. Koltsakidou AM, Evgenidou E et al (2017) Cytarabine degradation by simulated solar assisted photocatalysis using TiO2. Chem Eng J 316:823–831. https://doi.org/10.1016/j.cej.2017.01.132

    Article  CAS  Google Scholar 

  28. Wang KH, Hsieh YH, Wu CH, Chang CY (2000) The pH and anion effects on the heterogeneous photocatalytic degradation of o-methylbenzoic acid in TiO2 aqueous suspension. Chemosphere 40:389–394. https://doi.org/10.1016/S0045-6535(99)00252-0

    Article  CAS  Google Scholar 

  29. Colina-Márquez J, Machuca-Martínez F, Puma GL (2010) Radiation absorption and optimization of solar photocatalytic reactors for environmental applications. Environ Sci Technol 44:5112–5120. https://doi.org/10.1021/es100130h

    Article  CAS  Google Scholar 

  30. Otálvaro-Marín HL, Mueses MA, Machuca-Martínez F (2014) Boundary layer of photon absorption applied to heterogeneous photocatalytic solar flat plate reactor design. Int J Photoenergy. https://doi.org/10.1155/2014/930439

    Article  Google Scholar 

  31. Qian R, Zong H, Schneider J et al (2019) Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview. Catal Today 335:78–90. https://doi.org/10.1016/j.cattod.2018.10.053

    Article  CAS  Google Scholar 

  32. da Costa Filho BM, Araujo ALP, Padrão SP et al (2019) Effect of catalyst coated surface, illumination mechanism and light source in heterogeneous TiO2 photocatalysis using a mili-photoreactor for n-decane oxidation at gas phase. Chem Eng J 366:560–568. https://doi.org/10.1016/j.cej.2019.02.122

    Article  CAS  Google Scholar 

  33. Marien CBD, Le Pivert M, Azaïs A et al (2019) Kinetics and mechanism of Paraquat’s degradation: UV-C photolysis vs UV-C photocatalysis with TiO2/SiC foams. J Hazard Mater 370:164–171. https://doi.org/10.1016/j.jhazmat.2018.06.009

    Article  CAS  Google Scholar 

  34. Diaz-Angulo J, Lara-Ramos J, Mueses M et al (2020) Enhancement of the oxidative removal of diclofenac and of the TiO2 rate of photon absorption in dye-sensitized solar pilot scale CPC photocatalytic reactors. Chem Eng J 381:122520. https://doi.org/10.1016/j.cej.2019.122520

    Article  CAS  Google Scholar 

  35. Elhalil A, Elmoubarki R, Farnane M et al (2018) Photocatalytic degradation of caffeine as a model pharmaceutical pollutant on Mg doped ZnO-Al2O3 heterostructure. Environ Nanotechnol Monit Manag 10:63–72. https://doi.org/10.1016/j.enmm.2018.02.002

    Article  Google Scholar 

  36. Awfa D, Ateia M, Fujii M et al (2018) Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature. Water Res 142:26–45. https://doi.org/10.1016/j.watres.2018.05.036

    Article  CAS  Google Scholar 

  37. Zhao L, Ma J, Sun Z, Liu H (2009) Mechanism of heterogeneous catalytic ozonation of nitrobenzene in aqueous solution with modified ceramic honeycomb. Appl Catal B 89:326–334. https://doi.org/10.1016/j.apcatb.2008.12.009

    Article  CAS  Google Scholar 

  38. Addamo M, Augugliaro V, García-López E et al (2005) Oxidation of oxalate ion in aqueous suspensions of TiO2 by photocatalysis and ozonation. Catal Today 107–108:612–618. https://doi.org/10.1016/j.cattod.2005.07.030

    Article  CAS  Google Scholar 

  39. Domínguez JR, Beltrán J, Rodríguez O (2005) Vis and UV photocatalytic detoxification methods (using TiO2, TiO2/H2O2, TiO2/O3, TiO2/S2O82−, O3, H2O2, S2O82−. Catal Today 101:389–395. https://doi.org/10.1016/j.cattod.2005.03.010

    Article  CAS  Google Scholar 

  40. Alaton I, Balcioglu IA, Bahnemann D (2002) Advanced oxidation of a reactive dyebath effluent:comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Res 36:1143–1154

    Article  CAS  Google Scholar 

  41. Rueda-Marquez JJ, Levchuk I, Fernández Ibañez P, Sillanpää M (2020) A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J Clean Prod 258: https://doi.org/10.1016/j.jclepro.2020.120694

    Article  Google Scholar 

  42. Beltrán FJ (2003) Ozone reaction kinetics for water and wastewater systems, 1st edn. London, CRC Press

    Book  Google Scholar 

  43. Valdés H, Zaror CA (2006) Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: kinetic approach. Chemosphere 65:1131–1136. https://doi.org/10.1016/j.chemosphere.2006.04.027

    Article  CAS  Google Scholar 

  44. Malik SN, Ghosh PC, Vaidya AN, Mudliar SN (2020) Hybrid ozonation process for industrial wastewater treatment: principles and applications. A review. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101193

    Article  Google Scholar 

  45. Cortez Vásquez A, Rosales Gerónimo G, Naupari Quiroz R, Vega Huerta H (2016) Photocatalysis fundamentals and perspectives, Laurence M. RSC Energy and Environment Series

  46. Hirakawa T, Nosaka Y (2002) Properties of O2.- and OH. Formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 18:3247–3254. https://doi.org/10.1021/la015685a

    Article  CAS  Google Scholar 

  47. Quiñones DH, Álvarez PM, Rey A et al (2015) Application of solar photocatalytic ozonation for the degradation of emerging contaminants in water in a pilot plant. Chem Eng J 260:399–410. https://doi.org/10.1016/j.cej.2014.08.067

    Article  CAS  Google Scholar 

  48. Conway DC (1957) Mechanism of the homogeneous decomposition of hydrogen peroxide. J Phys Chem 61:1579–1580. https://doi.org/10.1021/j150557a034

    Article  CAS  Google Scholar 

  49. Monteagudo JM, Durán A, San Martín I (2014) Mineralization of wastewater from the pharmaceutical industry containing chloride ions by UV photolysis of H2O2/Fe(II) and ultrasonic irradiation. J Environ Manage 141:61–69. https://doi.org/10.1016/j.jenvman.2014.03.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the COLCIENCIAS for funding the national doctoral program (727-2015 and 647-2014); Universidad del Valle and Tecnoparque-SENA Nodo-Cali (Grant No. I2020-031-1093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiderman Machuca-Martínez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara-Ramos, J.A., Llanos-Diaz, G.D., Diaz-Angulo, J. et al. Evaluation of Caffeine Degradation by Sequential Coupling of TiO2/O3/H2O2/UV Processes. Top Catal 63, 1361–1373 (2020). https://doi.org/10.1007/s11244-020-01316-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01316-w

Keywords

Navigation