Skip to main content
Log in

The Role of Co-ZSM-5 Catalysts in Aerobic Oxidation of Ethylbenzene

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Various forms of cobalt catalysts have been studied extensively for selective aerobic oxidation of hydrocarbons. However, it remains unclear whether cobalt can directly activate molecular oxygen under mild reaction conditions. Here we investigated the catalytic roles of cobalt in ethylbenzene oxidation with and without a hydroperoxide initiator. The contribution of different cobalt species was studied by varying the metal loading on Co-impregnated ZSM-5 samples. Quantitative EPR was used to determine the impact of cobalt catalysts on the free radical concentrations. This work provided strong evidence that cobalt, in several different forms, catalyzes hydrocarbon oxidation by facilitating peroxy bond cleavage, instead of direct oxygen activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data reported here are available upon request from the corresponding author.

References

  1. Sheldon RA, Kochi JK (1981) Metal-catalyzed oxidations of organic compounds: mechanistic principles and synthetic methodology including biochemical processes. Academic Press, New York

    Google Scholar 

  2. Partenheimer W (2011) Chemistry of the oxidation of acetic acid during the homogeneous metal-catalyzed aerobic oxidation of alkylaromatic compounds. Appl Catal A Gen 409–410:48–54.

    Article  Google Scholar 

  3. Sumner CE Jr, Steinmetz GR (1985) Isolation of oxo-centered cobalt(III) clusters and their role in the cobalt bromide catalyzed autoxidation of aromatic hydrocarbons. J Am Chem Soc 107:6124–6126

    Article  CAS  Google Scholar 

  4. Shaabani A, Afaridoun H, Shaabani S, Keramati M, Nejad (2016) Natural hydroxyapatite supported cobalt tetrasulfophthalocyanine as green, renewable and biomaterial-based heterogeneous catalyst for selective aerobic oxidation of alkyl arenes and alcohols. RSC Adv 6:97367–97375

    Article  CAS  Google Scholar 

  5. Nakatsuka K, Yoshii T, Kuwahara Y, Mori K, Yamashita H (2017) Controlled synthesis of carbon-supported Co catalysts from single-sites to nanoparticles: characterization of the structural transformation and investigation of their oxidation catalysis. Phys Chem Chem Phys 19:4967–4974

    Article  CAS  PubMed  Google Scholar 

  6. Wang H, Wang L, Zhang J, Wang C, Liu Z, Gao X, Meng X, Yoo SJ, Kim J-G, Zhang W, Xiao F-S (2018) Interfacial CoOx layers on TiO2 as an efficient catalyst for solvent-free aerobic oxidation of hydrocarbons. ChemSusChem 11:3965–3974

    Article  CAS  PubMed  Google Scholar 

  7. Jiang Y, Zhang C, Li Y, Jiang P, Jiang J, Leng Y (2018) Solvent-free aerobic selective oxidation of hydrocarbons catalyzed by porous graphitic carbon encapsulated cobalt composites. New J Chem 42:16829–16835

    Article  CAS  Google Scholar 

  8. Liu T, Cheng H, Sun L, Liang F, Zhang C, Ying Z, Lin W, Zhao F (2016) Synthesis of acetophenone from aerobic catalytic oxidation of ethylbenzene over Ti-Zr-Co alloy catalyst: influence of annealing conditions. Appl Catal A Gen 512:9–14

    Article  CAS  Google Scholar 

  9. Ma H, Xu J, Chen C, Zhang Q, Ning J, Miao H, Zhou L, Li X (2007) Catalytic aerobic oxidation of ethylbenzene over Co/SBA-15.  Catal Lett 113:104–108

    Article  CAS  Google Scholar 

  10. Gavrichkov AA, Zakharov IV (2005) Critical phenomena in ethylbenzene oxidation in acetic acid solution at high cobalt(II) concentrations. Russ Chem Bull 54:1878–1882

    Article  CAS  Google Scholar 

  11. Maikap GC, Guhathakurta D, Iqbal J (1995) Cobalt catalyzed benzylic oxidation with molecular oxygen. Synlett 2:189–190

    Article  Google Scholar 

  12. Ishii Y, Iwahama T, Sakaguchi S, Nakayama K, Nishiyama Y (1996) Alkane oxidation with molecular oxygen using a new efficient catalytic system: N-hydroxyphthalimide (NHPI) combined with Co(acac)n (n = 2 or 3). J Org Chem 61:4520–4526

    Article  CAS  PubMed  Google Scholar 

  13. Partenheimer W (1991) Characterization of the reaction of cobalt(II) acetate, dioxygen and acetic acid, and its significance in autoxidation reactions. J Mol Catal 67:35–46

    Article  CAS  Google Scholar 

  14. Yoshino Y, Hayashi Y, Iwahama T, Sakaguchi S, Ishii Y (1997) Catalytic oxidation of alkylbenzenes with molecular oxygen under normal pressure and temperature by N-hydroxyphthalimide combined with Co(OAc)2. J Org Chem 62:6810–6813

    Article  CAS  Google Scholar 

  15. Emanuel NM, Maizus ZK, Skibida IP (1969) Catalytic activity of transition metal compounds in the liquid-phase oxidation of hydrocarbons. Angew Chem Int Ed 8:97–107

    Article  CAS  Google Scholar 

  16. Sakota K, Kamiya Y, Ohta N (1969) Aromatic oxidation by cobaltic acetate in acetic acid. Can J Chem 47:387–392

    Article  CAS  Google Scholar 

  17. Peng A, Kung MC, Brydon RRO, Ross MO, Qian L, Broadbelt LJ, Kung HH (2020) Noncontact catalysis: initiation of selective ethylbenzene oxidation by Au cluster-facilitated cyclooctene epoxidation. Sci Adv. https://doi.org/10.1126/sciadv.aax663

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chupin C, Vanveen A, Konduru M, Despres J, Mirodatos C (2006) Identity and location of active species for NO reduction by CH4 over Co-ZSM-5. J Catal 241:103–114

    Article  CAS  Google Scholar 

  19. Dĕdecĕk J, Kaucky D, Wichterlova B (2000) Co2+ ion siting in pentasil-containing zeolites, part 3 Co2+ ion sites and their occupation in ZSM-5: a VIS diffuse reflectance spectroscopy study. Micropor Mesopor Mater 35–36:483–494

    Article  Google Scholar 

  20. El-Malki EM, Werst D, Doan PE, Sachtler WMH (2000) Coordination of Co2+ cations inside cavities of zeolite MFI with lattice oxygen and adsorbed ligands. J Phys Chem B 104:5924–5931

    Article  CAS  Google Scholar 

  21. Zhu Z, Lu G, Zhang Z, Guo Y, Guo Y, Wang Y (2013) Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: effect of the preparation method. ACS Catal 3:1154–1164

    Article  CAS  Google Scholar 

  22. Peng A (2019) Investigation of selective ethylbenzene oxidation initiated by gold cluster-facilitated cyclooctene epoxidation and catalyzed by cobalt-zeolite Socony Mobil-Five Ph.D. Thesis. Northwestern University, Evanston, IL, USA

  23. Ma H, Xu J, Chen C, Zhang Q, Ning J, Miao H, Zhou L, Li X (2007) Catalytic aerobic oxidation of ethylbenzene over Co/SBA-15. Catal Lett 113:104–108

    Article  CAS  Google Scholar 

  24. Beznis NV, van Laak ANC, Weckhuysen BM, Bitter JH (2011) Oxidation of methane to methanol and formaldehyde over Co–ZSM-5 molecular sieves: tuning the reactivity and selectivity by alkaline and acid treatments of the zeolite ZSM-5 agglomerates. Micropor Mesopor Mater 138:176–183

    Article  CAS  Google Scholar 

  25. Wang X, Chen H-Y, Sachtler WMH (2000) Catalytic reduction of NOx by hydrocarbons over Co/ZSM-5 catalysts prepared with different methods. Appl Catal B Environ 26:L227–L239

    Article  CAS  Google Scholar 

  26. Park SK, Kurshev V, Lee CW, Kevan L (2000) Electron spin resonance and optical spectroscopic studies of Co-ZSM-5 with nitric oxide. Appl Magn Reson 19:21–33

    Article  CAS  Google Scholar 

  27. Makinen MW, Kuo LC, Yim MB, Wells GB, Fukuyama JM, Kim JE (1985) Ground term splitting of high-spin cobalt(2+) ion as a probe of coordination structure. 1. Dependence of the splitting on coordination geometry. J Am Chem Soc 107:5245–5255

    Article  CAS  Google Scholar 

  28. Zielazinski EL, Cutsail GE, Hoffman BM, Stemmler TL, Rosenzweig AC (2012) Characterization of a cobalt-specific P1B-ATPase. Biochemistry 51:7891–7900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McAlpin JG, Surendranath Y, Dinca M, Stich TA, Stoian SA, Casey WH, Nocera DG, Britt RD (2010) EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J Am Chem Soc 132:6882–6883

    Article  CAS  PubMed  Google Scholar 

  30. Stakheev AY, Lee CW, Park SJ, Chong PJ (1996), NO2 formation and its effect on the selective catalytic reduction of NO over Co/ZSM-5. Catal Lett 38:271–278

    Article  CAS  Google Scholar 

  31. Mhamdi M, Marceau E, Khaddar-Zine S, Ghorbel A, Che M, Taarit YB, Villain F (2004) Formation of cobalt phyllosilicate during solid state preparation of Co2p/ZSM5 catalysts from cobalt acetate. Catal Lett 98:135–140

    Article  CAS  Google Scholar 

  32. Saito H, Terunuma R, Kojima K, Yabe T, Ogo S, Hirayama H, Tanaka Y, Sekine Y (2017) Non-oxidative ethane dehydroaromatization on Co/H-ZSM-5 catalyst. Chem Lett 46:1646–1649

    Article  CAS  Google Scholar 

  33. Cruz RSd, Mascarenhas AJS, Andrade HMC (1998) Co-ZSM-5 catalysts for N2O decomposition. Appl Catal B 18:223–231

    Article  Google Scholar 

  34. Fierro G, Eberhardt MA, Houalla M, Hercules DM, Hall WK (1996) Redox chemistry of CoZSM-5 zeolite. J Phys Chem 100:8468–8477

    Article  CAS  Google Scholar 

  35. Carson GA, Nassir MH, Langell MA (1996) Epitaxial growth of Co3O4 on CoO(100). J Vacuum Sci Technol A: Vacuum Surf Films 14:1637–1642

    Article  CAS  Google Scholar 

  36. Petitto SC, Marsh EM, Carson GA, Langell MA (2008) Cobalt oxide surface chemistry: the interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water. J Mol Catal A: Chem 281:49–58

    Article  CAS  Google Scholar 

  37. McIntyre NS, Cook MG (1975) X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal Chem 47:2208–2213

    Article  CAS  Google Scholar 

  38. Svistunenko DA (2001) An EPR study of the peroxyl radicals induced by hydrogen peroxide in the haem proteins. Biochim Biophys Acta 1546:365–378

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DOE DE-FG02-03-ER15457. Collection and interpretation of EPR data was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Grant DE-SC0019342.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mayfair C. Kung or Harold H. Kung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, A., Kung, M.C., Ross, M.O. et al. The Role of Co-ZSM-5 Catalysts in Aerobic Oxidation of Ethylbenzene. Top Catal 63, 1708–1716 (2020). https://doi.org/10.1007/s11244-020-01305-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01305-z

Keywords

Navigation