Skip to main content
Log in

Development of arbitrary waveform torsional vibration signal generator

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In order to more accurately evaluate or calibrate the electronic torsional vibration test analyzer and analysis method, a torsional vibration signal generator is developed in the present study. The developed device generates a tooth pulse interval sequence based on the inverse solution of the shaft torsional equation. Moreover, a single-frequency signal, inter-harmonic signal, time-varying harmonic signal, and noise-containing time-varying inter-harmonic signal are simulated. The pulse width modulation module of TMS320F28335 is used to generate the instantaneous speed gear pulse signal, while the external expanded digital to analog conversion module is utilized to generate the corresponding speed analog signal. The hardware structure of the proposed generator has remarkable advantages, including simple structure, low-cost operation and easy to use interface. Moreover, it can be applied to evaluate or calibrate the torsional vibration test analyzer and analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Taradai, D. V., Deomidova, Y. A., Zile, A. Z., et al. (2018). Results from investigations of torsional vibration in turbine set shaft systems. Thermal Engineering, 65(1), 17–26.

    Article  Google Scholar 

  2. Lv, B., Ouyang, H., Li, W., et al. (2016). An indirect torsional vibration receptance measurement method for shaft structures. Journal of Sound & Vibration, 372, S0022460X16001620.

    Article  Google Scholar 

  3. Xue, S., & Howard, I. (2018). Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection. Mechanical Systems and Signal Processing, 100, 706.

    Article  Google Scholar 

  4. Charles, P., Sinha, J. K., Gu, F., et al. (2009). Detecting the crankshaft torsional vibration of diesel engines for combustion related diagnosis. Noise & Vibration Bulletin, 321(3), 1171–1185.

    Google Scholar 

  5. Verrecas, B., Janssens, K., & Britte, L. (2014). Comparison of torsional vibration measurement techniques. Advances in Condition Monitoring of Machinery in Non-stationary Operations. Berlin Heidelberg: Springer.

    Google Scholar 

  6. Seidlitz, S., Kuether, R. J., & Allen, M. S. (2016). Experimental approach to compare noise floors of various torsional vibration sensors. Experimental Techniques, 40(2), 661–675.

    Article  Google Scholar 

  7. Palermo, A., Janssens, K., & Britte, L. (2016). Evaluation and improvement of accuracy in the instantaneous angular speed (IAS) and torsional vibration measurement using zebra tapes. Advances in Condition Monitoring of Machinery in Non-Stationary Operations.

  8. Janssens, K., Vlierberghe, P. V., Philippe, D. H., et al. (2011). Zebra tape butt joint algorithm for torsional vibrations. Structural Dynamics (Vol. 3). New York: Springer.

    Google Scholar 

  9. Rivola, A., & Troncossi, M. (2014). Zebra tape identifification for the instantaneous angular speed computation and angular resampling of motorbike valve train measurements. Mechanical Systems and Signal Processing, 44(1–2), 5–13.

    Article  Google Scholar 

  10. Meroño, P. A., Gómez, F. C., Marín, F., & Zaghar, L. (2016). Measurement of torsional vibration to detect angular misalignment through the modulated square wave of an encoder. Measurement Science & Technology, 28(2), 025207.

    Article  Google Scholar 

  11. Lee, J. K., Seung, H. M., Park, C. I., et al. (2018). Magnetostrictive patch sensor system for battery-less real-time measurement of torsional vibrations of rotating shafts. Journal of Sound and Vibration, 414, 245–258.

    Article  Google Scholar 

  12. Vance, J., Zeidan, F., & Murphy, B. (2010). Torsional vibration. Machinery vibration and rotordynamics. London: Wiley-Blackwell.

    Book  Google Scholar 

  13. Du, J. (1994). Monitoring test and instrument for torsional vibration of shafting. Nanjing: Southeast University Press.

    Google Scholar 

  14. Resor, B. R., Trethewey, M. W., & Maynard, K. P. (2005). Compensation for encoder geometry and shaft speed variation in time interval torsional vibration measurement. Journal of Sound and Vibration, 286(4), 897–920.

    Article  Google Scholar 

  15. Remond, D. (1998). Practical performances of high-speed measurement of gear transmission error or torsional vibrations with optical encoders. Measurement Science & Technology, 9(3), 347–353.

    Article  Google Scholar 

  16. Borghesani, P., Pennacchi, P., Chatterton, S., et al. (2014). The velocity synchronous discrete Fourier transform for order tracking in the field of rotating machinery. Mechanical Systems and Signal Processing, 44(1–2), 118–133.

    Article  Google Scholar 

  17. Marple, S. L. J. (1998). Digital spectral analysis with applications. Journal of the Acoustical Society of America, 86(5), 2043.

    Article  Google Scholar 

  18. Huang, N. E., & Wu, Z. (2008). A review on Hilbert-transform: Method and its applications to geophysical studies. Reviews of Geophysics, 46(2), RG2006.

    Article  Google Scholar 

  19. Huang, N. E., Shen, Z., Long, S. R., et al. (1971). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings A, 1998(454), 903–995.

    Google Scholar 

  20. Daubechies, I., & Heil, C. (1998). Ten lectures on wavelets. Computers in Physics, 6(3), 1671.

    Google Scholar 

  21. Dragomiretskiy, K., & Zosso, D. (2014). Variational mode decomposition. IEEE Transactions on Signal Processing, 62(3), 531–544.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjie Zhang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Lu, G., Zhang, C. et al. Development of arbitrary waveform torsional vibration signal generator. Telecommun Syst 75, 425–435 (2020). https://doi.org/10.1007/s11235-020-00692-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00692-8

Keywords

Navigation