Skip to main content
Log in

Quiet, Discrete Auroral Arcs: Acceleration Mechanisms

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The theory of the acceleration of auroral particles is reviewed, focusing on developments in the last 15 years. We discuss elementary plasma physics processes leading to acceleration of electrons to energies compatible with emission observed for quiet, discrete auroral arcs, defined as arcs that have time scales of minutes or more and spatial scales ranging from less than 1 km to tens of kilometers. For context, earlier observations are first described briefly. The theoretical fundamentals of auroral particle acceleration are based on the kinetic theory of plasmas, in particular the development of parallel electric fields. These parallel electric fields can either be distributed along the magnetic field lines, often associated with the mirror geometry of the geomagnetic field, or concentrated into narrow regions of charge separation known as double layers. Observations have indicated that the acceleration process depends on whether the field-aligned currents are directed away from the Earth, toward the Earth, or in mixed regions of currents often associated with the propagation of Alfvén waves. Recent observations from the NASA Fast Auroral SnapshoT (FAST) satellite, the ESA satellite constellation Cluster, and the Japanese Reimei satellite have provided new insights into the auroral acceleration process and have led to further refinements to the theory of auroral particle acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • H. Alfvén, On the theory of magnetic storms and aurorae. Tellus 10, 104 (1958)

    ADS  Google Scholar 

  • H. Alfven (1986). Double layers and circuits in astrophysics (TRITA-EPP–86-04). Sweden

  • H. Alfvén, C.-G. Fälthammar, Cosmic Electrodynamics (Clarendon Press, Oxford, 1963)

    MATH  Google Scholar 

  • L. Alm, B. Li, G.T. Marklund, T. Karlsson, Statistical altitude distribution of the auroral density cavity. J. Geophys. Res. Space Phys. 120, 996–1006 (2015a). https://doi.org/10.1002/2014JA020691

    Article  ADS  Google Scholar 

  • L. Alm, G.T. Marklund, T. Karlsson, Electron density and parallel electric field distribution of the auroral density cavity. J. Geophys. Res. Space Phys. 120, 9428–9441 (2015b). https://doi.org/10.1002/2015JA021593

    Article  ADS  Google Scholar 

  • L. Andersson, R.E. Ergun, D.L. Newman, J.P. McFadden, C.W. Carlson, Y.J. Su, Characteristics of parallel electric fields in the downward current region of the aurora. Phys. Plasmas 9(8), 3600–3609 (2002)

    ADS  Google Scholar 

  • M. André, L. Eliasson, Electron acceleration by low frequency electric field fluctuations: electron conics. Geophys. Res. Lett. 19, 1073 (1992)

    ADS  Google Scholar 

  • T.M. Antonsen Jr., B. Lane, Kinetic equations for low frequency instabilities in inhomogeneous plasma. Phys. Fluids 23, 1205–1214 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  • R.L. Arnoldy, T.E. Moore, L.J. Cahill, Low-altitude field-aligned electrons. J. Geophys. Res. 90, 8445 (1985)

    ADS  Google Scholar 

  • A.V. Artemyev, R. Rankin, M. Blanco, Electron trapping and acceleration by kinetic Alfvén waves in the inner magnetosphere. J. Geophys. Res. Space Phys. 120, 10,305–10,316 (2015). https://doi.org/10.1002/2015JA021781

    Article  Google Scholar 

  • G. Atkinson, Auroral arcs: result of the interaction of a dynamic magnetosphere with the ionosphere. J. Geophys. Res. 75(25), 4746–4755 (1970)

    ADS  Google Scholar 

  • M.A. Beer, G.W. Hammett, Toroidal gyrofluid equations for simulations of tokamak turbulence. Phys. Plasmas 3, 4046–4064 (1996)

    ADS  Google Scholar 

  • J. Birn, A.V. Artemyev, D.N. Baker, M. Echim, M. Hoshino, L.M. Zelenyi, Particle acceleration in the magnetotail and aurora. Space Sci. Rev. 173, 49 (2012)

    ADS  Google Scholar 

  • E.M. Blixt, A. Brekke, A model of currents and electric fields in a discrete auroral arc. Geophys. Res. Lett. 23(18), 2553–2556 (1996)

    ADS  Google Scholar 

  • L.P. Block, Potential double layers in the ionosphere. Cosm. Electrodyn. 3, 349 (1972)

    ADS  Google Scholar 

  • J.E. Borovsky, Double layers do accelerate particles in the auroral zone. Phys. Rev. Lett. 69, 1054 (1992)

    ADS  Google Scholar 

  • J.E. Borovsky, J. Birn, M.M. Echim, S. Fujita, R.L. Lysak, D.J. Knudsen, O. Marghitu, A. Otto, T.-H. Watanabe, T. Tanaka, Quiescent discrete auroral arcs: a review of magnetospheric generator mechanisms. Space Sci. Rev. 216, 1 (2020). https://doi.org/10.1007/s11214-019-0619-5

    Article  ADS  Google Scholar 

  • R. Boström, Kinetic and space charge control of current flow and voltage drops along magnetic flux tubes: kinetic effects. J. Geophys. Res. 108(A4), 8004 (2003). https://doi.org/10.1029/2002JA009295

    Article  Google Scholar 

  • R. Boström, Kinetic and space charge control of current flow and voltage drops along magnetic flux tubes: 2. Space charge effects. J. Geophys. Res. 109(A18), A01208 (2004). https://doi.org/10.1029/2003JA010078

    Article  ADS  Google Scholar 

  • A.J. Brizard, T.S. Hahm, Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421–468 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  • D.A. Bryant, R. Bingham, U. de Angelis, Double layers are not particle accelerators. Phys. Rev. Lett. 68, 37 (1992)

    ADS  Google Scholar 

  • J.L. Burch, J.D. Winningham, V.A. Blevins, N. Eaker, W.C. Gibson, R.A. Hoffman, High altitude plasma instrument for Dynamics Explorer-A. Space Sci. Instrum. 5, 455 (1981)

    ADS  Google Scholar 

  • P. Carlqvist, R. Boström, Space-charge regions above the aurora. J. Geophys. Res. 75(34), 7140–7146 (1970)

    ADS  Google Scholar 

  • C.W. Carlson, R.P. Pfaff, J.G. Watzin, The Fast Auroral SnapshoT (FAST) mission. Geophys. Res. Lett. 25, 2013 (1998a)

    ADS  Google Scholar 

  • C. Carlson et al., FAST observations in the downward auroral current region: energetic upgoing electron beams, parallel potential drop, and ion heating. Geophys. Res. Lett. 25, 2017–2021 (1998b)

    ADS  Google Scholar 

  • C.C. Chaston, J.W. Bonnell, L.M. Peticolas, C.W. Carlson, J.P. McFadden, R.E. Ergun, Driven Alfven waves and electron acceleration: a FAST case study. Geophys. Res. Lett. 29(11), 1535 (2002). https://doi.org/10.1029/2001GL013842

    Article  ADS  Google Scholar 

  • C.C. Chaston, J.W. Bonnell, C.W. Carlson, J.P. McFadden, R.E. Ergun, R.J. Strangeway, Properties of small-scale Alfvén waves and accelerated electrons from FAST. J. Geophys. Res. 108, 8003 (2003a). https://doi.org/10.1029/2002JA009420

    Article  Google Scholar 

  • C.C. Chaston, J.W. Bonnell, C.W. Carlson, J.P. McFadden, R.J. Strangeway, R.E. Ergun, Kinetic effects in the acceleration of auroral electrons in small scale Alfven waves: a FAST case study. Geophys. Res. Lett. 30(6), 1289 (2003b). https://doi.org/10.1029/2002GL015777

    Article  ADS  Google Scholar 

  • C.C. Chaston, K. Seki, T. Sakanoi, K. Asamura, M. Hirahara, C.W. Carlson, Cross–scale coupling in the auroral acceleration region. Geophys. Res. Lett. 38, L20101 (2011). https://doi.org/10.1029/2011GL049185

    Article  ADS  Google Scholar 

  • Y.T. Chiu, J.M. Cornwall, Electrostatic model of a quiet auroral arc. J. Geophys. Res. 85, 543 (1980)

    ADS  Google Scholar 

  • Y.T. Chiu, M. Schulz, Self-consistent particle and parallel electrostatic field distributions in the magnetospheric-ionospheric auroral region. J. Geophys. Res. 83, 629 (1978)

    ADS  Google Scholar 

  • Y.T. Chiu, A.L. Newman, J.M. Cornwall, On the structure and mapping of auroral electrostatic potentials. J. Geophys. Res. 86, 10,029 (1981)

    ADS  Google Scholar 

  • Y. Chiu, J. Cornwall, J. Fennell, D. Gorney, P. Mizera, Auroral plasma in the evening sector: satellite observations and theoretical interpretations. Space Sci. Rev. 35, 211–257 (1983)

    ADS  Google Scholar 

  • A.E. Clark, C.E. Seyler, Electron beam formation by small-scale oblique inertial Alfvén waves. J. Geophys. Res. 104, 17 233–17 249 (1999)

    ADS  Google Scholar 

  • J.H. Clemmons, M.H. Boehm, G.E. Paschmann, G. Haerendel, Signatures of energy-time dispersed electron fluxes observed by Freja. Geophys. Res. Lett. 21, 1899 (1994)

    ADS  Google Scholar 

  • A.P. Cran-McGreehin, A.N. Wright, Electron acceleration in downward auroral field-aligned currents. J. Geophys. Res. Space Phys. 110, A10S15 (2005a)

    ADS  Google Scholar 

  • A.P. Cran-McGreehin, A.N. Wright, Current-voltage relationship in downward field-aligned current region. J. Geophys. Res. Space Phys. 110, A10S10 (2005b)

    ADS  Google Scholar 

  • A.P. Cran-McGreehin, A.N. Wright, A.W. Hood, Ionospheric depletion in auroral downward currents. J. Geophys. Res. Space Phys. 112, A10309 (2007)

    ADS  Google Scholar 

  • D.R. Croley Jr., P.F. Mizera, J.F. Fennell, Signature of a parallel electric field in ion and electron distributions in velocity space. J. Geophys. Res. 83, 2701 (1978)

    ADS  Google Scholar 

  • P.A. Damiano, A.N. Wright, Two-dimensional hybrid MHD-kinetic electron simulations of an Alfvén wave pulse. J. Geophys. Res. 110, A01201 (2005). https://doi.org/10.1029/2004JA010603

    Article  ADS  Google Scholar 

  • P.A. Damiano, R.D. Sydora, J.C. Samson, Hybrid magnetohydrodynamic-kinetic model of standing shear Alfvén waves. J. Plasma Phys. 69, 277–304 (2003)

    ADS  Google Scholar 

  • P.A. Damiano, A.N. Wright, R.D. Sydora, J.C. Samson, Energy dissipation via electron energization in standing shear Alfvén waves. Phys. Plasmas 14, 062904 (2007)

    ADS  Google Scholar 

  • P.A. Damiano, J.R. Johnson, C.C. Chaston, Ion temperature effects on magnetotail Alfvén wave propagation and electron energization. J. Geophys. Res. Space Phys. 120, 5623–5632 (2015). https://doi.org/10.1002/2015JA021074

    Article  ADS  Google Scholar 

  • P.A. Damiano, J.R. Johnson, C.C. Chaston, Ion gyroradius effects on particle trapping in kinetic Alfvén waves along auroral field lines. J. Geophys. Res. Space Phys. 121, 10,831–10,844 (2016). https://doi.org/10.1002/2016JA022566

    Article  Google Scholar 

  • R.A. Doe, J.F. Vickrey, M. Mendillo, Electrodynamic model for the formation of auroral ionospheric cavities. J. Geophys. Res. Space Phys. 100(A6), 9683–9696 (1995)

    ADS  Google Scholar 

  • W. Dorland, G.W. Hammett, Gyrofluid turbulence models with kinetic effects. Phys. Fluids B 5, 812–835 (1993)

    ADS  Google Scholar 

  • R.H. Eather, Majestic Lights: The Aurora in Science, History, and the Arts (American Geophysical Union, Washington, 1980)

    Google Scholar 

  • M.M. Echim, M. Roth, J. DeKeyser, Sheared magnetospheric plasma flows and discrete auroral arcs: a quasi-static coupling model. Ann. Geophys. 25, 317 (2007)

    ADS  Google Scholar 

  • R.C. Elphic et al., The auroral current circuit and field-aligned currents observed by FAST. Geophys. Res. Lett. 25, 2033–2036 (1998)

    ADS  Google Scholar 

  • R.E. Ergun, L. Andersson, D.S. Main, Y.J. Su, C.W. Carlson, J.P. McFadden, F.S. Mozer, Parallel electric fields in the upward current region of the aurora: indirect and direct observations. Phys. Plasmas 9(9), 3685–3694 (2002)

    ADS  Google Scholar 

  • R.E. Ergun, L. Andersson, C.W. Carlson, D.L. Newman, M.V. Goldman, Double layers in the downward current region of the aurora. Nonlinear Process. Geophys. 10, 45–52 (2003). https://doi.org/10.5194/npg-10-45-2003

    Article  ADS  Google Scholar 

  • A.I. Eriksson, R. Boström, Are weak double layers important for auroral particle acceleration? in Auroral Plasma Dynamics, ed. by R.L. Lysak. Geophysical Monograph, vol. 80 (American Geophysical Union, Washington, 1993), p. 105

    Google Scholar 

  • C.-G. Fälthammar, Non-resistive potential drops in cosmical plasmas, in Particle Acceleration in Astrophysics, ed. by J. Arons, C. Max, C. McKee (American Institute of Physics, New York, 1979), p. 27

    Google Scholar 

  • C.-G. Fälthammar, Magnetic-field-aligned electric fields. ESA J. 7, 385–404 (1983)

    ADS  Google Scholar 

  • B. Forget, J.-C. Cerisier, A. Berthelier, J.-J. Berthelier, Ionospheric closure of small-scale Birkeland currents. J. Geophys. Res. 96, 1843 (1991)

    ADS  Google Scholar 

  • C. Forsyth et al., Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements. J. Geophys. Res. 117, A12203 (2012). https://doi.org/10.1029/2012JA017655

    Article  ADS  Google Scholar 

  • L.A. Frank, K.L. Ackerson, Observations of charged particle precipitation into the auroral zone. J. Geophys. Res. 76, 3612 (1971)

    ADS  Google Scholar 

  • H.U. Frey et al., Freja and ground-based analysis of inverted-V events. J. Geophys. Res. 103, 4303–4314 (1998)

    ADS  Google Scholar 

  • H.U. Frey et al., Small and meso-scale properties of a substorm onset auroral arc. J. Geophys. Res. 115, A10209 (2010). https://doi.org/10.1029/2010JA015537

    Article  ADS  Google Scholar 

  • M. Fridman, J. Lemaire, Relationship between auroral electron fluxes and field aligned electric potential differences. J. Geophys. Res. 85, 664 (1980)

    ADS  Google Scholar 

  • E.A. Frieman, L. Chen, Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys. Fluids 25, 502–508 (1982)

    ADS  MATH  Google Scholar 

  • Y. Fukuda, M. Hirahara, K. Asamura, T. Sakanoi, Y. Miyoshi, T. Takada, A. Yamazaki, K. Seki, Y. Ebihara, Electron properties in inverted-V structures and their vicinities based on Reimei observations. J. Geophys. Res. Space Phys. 119, 3650–3663 (2014). https://doi.org/10.1002/2013JA018938

    Article  ADS  Google Scholar 

  • A. Ghielmetti, R. Johnson, R. Sharp, E. Shelley, The latitudinal, diurnal, and altitudinal distributions of upward flowing energetic ions of ionospheric origin. Geophys. Res. Lett. 5, 59–62 (1978)

    ADS  Google Scholar 

  • D.M. Gillies, D. Knudsen, R. Rankin, S. Milan, E. Donovan, A statistical survey of the 630.0-nm optical signature of periodic auroral arcs resulting from magnetospheric field line resonances. Geophys. Res. Lett. 45, 4648–4655 (2018). https://doi.org/10.1029/2018GL077491

    Article  ADS  Google Scholar 

  • C.K. Goertz, Double layers and electrostatic shocks in space. Rev. Geophys. Space Phys. 17, 418 (1979)

    ADS  Google Scholar 

  • C.K. Goertz, R.W. Boswell, Magnetosphere-ionosphere coupling. J. Geophys. Res. 84, 7239 (1979)

    ADS  Google Scholar 

  • M.V. Goldman, M.M. Oppenheim, D.L. Newman, Theory of localized bipolar wave-structures and nonthermal particle distributions in the auroral ionosphere. Nonlinear Process. Geophys. 6(3/4), 221–228 (1999)

    ADS  Google Scholar 

  • M.V. Goldman, D.L. Newman, A. Mangeney, Theory of weak bipolar fields and electron holes with applications to space plasmas. Phys. Rev. Lett. 99(14), 145002 (2007)

    ADS  Google Scholar 

  • D.J. Gorney, A. Clarke, D. Croley, J. Fennell, J. Luhmann, P. Mizera, The distribution of ion beams and conics below 8000 km. J. Geophys. Res. 86, 83 (1981)

    ADS  Google Scholar 

  • D.J. Gorney, Y.T. Chiu, D.R. Croley, Trapping of ion conics by downward parallel electric fields. J. Geophys. Res. Space Phys. 90(A5), 4205–4210 (1985)

    ADS  Google Scholar 

  • H. Gunell, J. De Keyser, E. Gamby, I. Mann, Vlasov simulations of parallel potential drops. Ann. Geophys. 31(7), 1227–1240 (2013). https://doi.org/10.5194/angeo-31-1227-2013. 2013

    Article  ADS  Google Scholar 

  • H. Gunell, L. Andersson, J. De Keyser, I. Mann, Vlasov simulations of trapping and loss of auroral electrons. Ann. Geophys. 33, 279–293 (2015). https://doi.org/10.5194/angeo-33-279-2015

    Article  ADS  Google Scholar 

  • D.A. Gurnett, INJUN-5 observations of magnetospheric electric fields and plasma convection, in Earth’s Magnetospheric Processes, ed. by B.M. McCormac (1972a), p. 253

    Google Scholar 

  • D.A. Gurnett, Electric field and plasma observations in the magnetosphere, in Critical Problems of Magnetospheric Physics, ed. by E.R. Dyer (1972b), pp. 123–138

    Google Scholar 

  • D.A. Gurnett, L.A. Frank, Observed relationships between electric fields and auroral particle precipitation. J. Geophys. Res. 78, 145 (1973)

    ADS  Google Scholar 

  • G. Haerendel, An Alfvén wave model of auroral arcs, in High-Latitude Space Plasma Physics, ed. by B. Hultqvist, T. Hagfors (Plenum, New York, 1983), p. 515

    Google Scholar 

  • T.J. Hallinan, H.C. Stenbaek-Nielsen, C.S. Deehr, Enhanced aurora. J. Geophys. Res. Space Phys. 90(A9), 8461–8475 (1985)

    ADS  Google Scholar 

  • G.W. Hammett, F.W. Perkins, Fluid moment models for Landau damping with application to the ion-temperature-gradient instability. Phys. Rev. Lett. 64, 3019–3022 (1990)

    ADS  Google Scholar 

  • A. Hasegawa, Particle acceleration by MHD surface wave and formation of aurora. J. Geophys. Res. 81, 5083 (1976)

    ADS  Google Scholar 

  • S.M. Hatch, J. LaBelle, C.C. Chaston, Inferring source properties of monoenergetic electron precipitation from kappa and Maxwellian moment-voltage relationships. J. Geophys. Res. Space Phys. 124, 1548–1567 (2019). https://doi.org/10.1029/2018JA026158

    Article  ADS  Google Scholar 

  • R.D. Hazeltine, J.D. Meiss, Plasma Confinement (Addison-Wesley, Redwood City, 1992)

    Google Scholar 

  • N. Hershkowitz, Review of recent laboratory double layer experiments. Space Sci. Rev. 41, 351–391 (1985). https://doi.org/10.1007/BF00190655

    Article  ADS  Google Scholar 

  • B. Hultqvist, On the production of a magnetic-field-aligned electric field by the interaction between the hot magnetospheric plasma and the cold ionosphere. Planet. Space Sci. 19, 749 (1971)

    ADS  Google Scholar 

  • B. Hultqvist, The Viking project. Geophys. Res. Lett. 14, 379 (1987)

    ADS  Google Scholar 

  • B. Hultqvist, Downward ion acceleration at auroral latitudes: cause of parallel electric field. Ann. Geophys. 20(8), 1117–1136 (2002)

    ADS  Google Scholar 

  • K.J. Hwang, R.E. Ergun, L. Andersson, D.L. Newman, C.W. Carlson, Test particle simulations of the effect of moving DLs on ion outflow in the auroral downward-current region. J. Geophys. Res. Space Phys. 113(A1) (2008). https://doi.org/10.1029/2007JA012640

  • K.J. Hwang, R.E. Ergun, D.L. Newman, J.B. Tao, L. Andersson, Self-consistent evolution of auroral downward-current region ion outflow and moving double layer. Geophys. Res. Lett. 36(21) (2009). https://doi.org/10.1029/2009GL040585

  • L. Jago, The Northern Lights (Vintage Books, New York, 2001)

    Google Scholar 

  • J.R. Jasperse, Ion heating, electron acceleration, and the self-consistent parallel E-field in downward auroral current regions. Geophys. Res. Lett. 25(18), 3485–3488 (1998)

    ADS  Google Scholar 

  • J.R. Jasperse, N.J. Grossbard, The Alfven-Falthammar formula for the parallel E-field and its analogue in downward auroral-current regions. IEEE Trans. Plasma Sci. 28(6), 1874–1886 (2000)

    ADS  Google Scholar 

  • J.R. Jasperse, B. Basu, E.J. Lund, N. Grossbard, The self-consistent parallel electric field due to electrostatic ion-cyclotron turbulence in downward auroral-current regions of the Earth’s magnetosphere. IV. Phys. Plasmas 17(6), 062904 (2010)

    ADS  Google Scholar 

  • T. Karlsson, The acceleration region of stable auroral arcs, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, ed. by A. Keiling, E. Donovan, F. Bagenal, T. Karlsson. AGU Monograph, vol. 197 (American Geophysical Union, Washington, 2012)

    Google Scholar 

  • T. Karlsson, G. Marklund, Simulations of effects of small-scale auroral current closure in the return current region. Phys. Space Plasmas 15, 401 (1998)

    Google Scholar 

  • T. Karlsson, G. Marklund, N. Brenning, I. Axnäs, On enhanced aurora and low-altitude parallel electric fields. Phys. Scr. 72(5), 419 (2005)

    ADS  Google Scholar 

  • T. Karlsson, N. Brenning, O. Marghitu, G. Marklund, S. Buchert, High-altitude signatures of ionospheric density depletions caused by field-aligned currents (2007). ArXiv preprint. arXiv:0704.1610

  • T. Karlsson, L. Andersson, D.M. Gilies, K. Lynch, O. Marghitu, N. Paramies, N. Sivadas, J. Wu, Quiet, discrete aurora arcs: observations. Space Sci. Rev. 216, 16 (2020). https://doi.org/10.1007/s11214-020-0641-7

    Article  ADS  Google Scholar 

  • R. Kataoka, C. Chaston, D. Knudsen, K.A. Lynch, R. Lysak, Y. Song, K. Murase, T. Sakanoi, J. Semeter, T.-H. Watanabe, D. Whiter, Small-scale dynamic aurora. Space Sci. Rev. (2020), submitted

  • G.V. Khazanov, M.W. Liemohn, E.N. Krivorutsky, T.E. Moore, Generalized kinetic description of a plasma in an arbitrary field-aligned potential energy structure. J. Geophys. Res. 103, 6871–6890 (1998)

    ADS  Google Scholar 

  • S. Knight, Parallel electric fields. Planet. Space Sci. 21, 741 (1973)

    ADS  Google Scholar 

  • G. Knorr, C.K. Goertz, Existence and stability of strong potential double layers. Astrophys. Space Sci. 31, 209 (1974)

    ADS  Google Scholar 

  • D.J. Knudsen, Spatial modulation of electron energy and density by nonlinear stationary inertial Alfvén waves. J. Geophys. Res. 101, 10,761 (1996)

    ADS  Google Scholar 

  • D.J. Knudsen, J.H. Clemmons, J.-E. Wahlund, Correlation between core ion energization, suprathermal electron beams, and broadband ELF plasma waves. J. Geophys. Res. 103, 4171 (1998)

    ADS  Google Scholar 

  • D.J. Knudsen, E.F. Donovan, L.L. Cogger, B. Jackel, W.D. Shaw, Width and structure of mesoscale optical auroral arcs. Geophys. Res. Lett. 28, 705 (2001)

    ADS  Google Scholar 

  • J. Lemaire, M. Scherer, Model of the polar ion-exosphere. Planet. Space Sci. 18, 103–120 (1970)

    ADS  Google Scholar 

  • J. Lemaire, M. Scherer, Kinetic models of the solar wind. J. Geophys. Res. 76, 7479 (1971)

    ADS  Google Scholar 

  • J. Lemaire, M. Scherer, Plasma sheet particle precipitation: a kinetic model. Planet. Space Sci. 21, 281–289 (1973)

    ADS  Google Scholar 

  • M.R. Lessard, D.J. Knudsen, Ionospheric reflection of small-scale Alfvén waves. Geophys. Res. Lett. 28, 3573 (2001)

    ADS  Google Scholar 

  • M.W. Liemohn, G.V. Khazanov, Collisionless plasma modeling in an arbitrary potential energy distribution. Phys. Plasmas 5, 580–589 (1998)

    ADS  Google Scholar 

  • S. Liu, J. Liao, Numerical analysis of double layers in the downward current region of the aurora. J. Plasma Phys. 77(3), 345–356 (2011)

    ADS  Google Scholar 

  • P. Louarn, J.-E. Wahlund, T. Chust, H. deFeraudy, A. Roux, B. Holback, P.O. Dovner, A.I. Eriksson, G. Holmgren, Observation of kinetic Alfvén waves by the Freja spacecraft. Geophys. Res. Lett. 21, 1847 (1994)

    ADS  Google Scholar 

  • G. Lu et al., On the auroral current-voltage relationship. J. Geophys. Res. 96, 3523–3531 (1991)

    ADS  Google Scholar 

  • R. Lundin, I. Sandahl, Some characteristics of the parallel electric field acceleration of electrons over discrete auroral arcs as observed from two rocket flights, in European Sounding-Rocket, Balloon and Related Research, with Emphasis on Experiments at High Latitudes, vol. SP–135 (1978), pp. 125–136. ESA

    Google Scholar 

  • R. Lundin, G. Haerendel, S. Grahn, The Freja project. Geophys. Res. Lett. 21, 1823 (1994)

    ADS  Google Scholar 

  • K.A. Lynch, R.L. Arnoldy, P.M. Kintner, J.L. Vago, Electron distribution function behavior during localized transverse ion acceleration events in the topside auroral zone. J. Geophys. Res. 99, 2227 (1994)

    ADS  Google Scholar 

  • K.A. Lynch, D. Pietrowski, R.B. Torbert, N. Ivchenko, G. Marklund, F. Primdahl, Multiple-point electron measurements in a nightside auroral arc: Auroral Turbulence II particle observations. Geophys. Res. Lett. 26, 3361 (1999)

    ADS  Google Scholar 

  • L.R. Lyons, Generation of large-scale regions of auroral currents, electric potentials, and precipitation by the divergence of the convection electric field. J. Geophys. Res. 85, 17 (1980)

    ADS  Google Scholar 

  • L. Lyons, D. Evans, R. Lundin, An observed relation between magnetic field aligned electric fields and downward energy fluxes in the vicinity of auroral forms. J. Geophys. Res. 84, 457–461 (1979)

    ADS  Google Scholar 

  • R.L. Lysak, Electrodynamic coupling of the magnetosphere and ionosphere. Space Sci. Rev. 52, 33 (1990)

    ADS  Google Scholar 

  • R.L. Lysak, Feedback instability of the ionospheric resonant cavity. J. Geophys. Res. 96, 1553–1568 (1991)

    ADS  Google Scholar 

  • R.L. Lysak, Generalized model of the ionospheric Alfven resonator, in Auroral Plasma Dynamics, ed. by R.L. Lysak. AGU Monograph, vol. 80 (1993), p. 121

    Google Scholar 

  • R.L. Lysak, C.W. Carlson, Effect of microscopic turbulence on magnetosphere-ionosphere coupling. Geophys. Res. Lett. 8, 269 (1981)

    ADS  Google Scholar 

  • R.L. Lysak, C.T. Dum, Dynamics of magnetosphere-ionosphere coupling including turbulent transport. J. Geophys. Res. 88, 365 (1983)

    ADS  Google Scholar 

  • R.L. Lysak, M.K. Hudson, Coherent anomalous resistivity in the region of electrostatic shocks. Geophys. Res. Lett. 6, 661 (1979)

    ADS  Google Scholar 

  • R.L. Lysak, W. Lotko, On the kinetic dispersion relation for shear Alfvén waves. J. Geophys. Res. 101, 5085 (1996)

    ADS  Google Scholar 

  • R.L. Lysak, Y. Song, Energetics of the ionospheric feedback interaction. J. Geophys. Res. Space Phys. 107(A8), SIA-6 (2002)

    Google Scholar 

  • R.L. Lysak, Y. Song, Non-local interactions between electrons and Alfvén waves on auroral field lines. J. Geophys. Res. 110, A10S06 (2005). https://doi.org/10.1029/2004JA010803

    Article  ADS  Google Scholar 

  • R.L. Lysak, Y. Song, Propagation of kinetic Alfvén waves in the ionospheric Alfvén resonator in the presence of density cavities. Geophys. Res. Lett. 35, L20101 (2008). https://doi.org/10.1029/2008GL035728

    Article  ADS  Google Scholar 

  • R.L. Lysak, Y. Song, Development of parallel electric fields at the plasma sheet boundary layer. J. Geophys. Res. 116, A00K14 (2011). https://doi.org/10.1029/2010JA016424

    Article  ADS  Google Scholar 

  • J.E. Maggs, T.N. Davis, Measurements of the thickness of auroral structures. Planet. Space Sci. 16, 205 (1968)

    ADS  Google Scholar 

  • D.S. Main, D.L. Newman, R.E. Ergun, Double layers and ion phase-space holes in the auroral upward-current region. Phys. Rev. Lett. 97, 185001 (2006)

    ADS  Google Scholar 

  • D.S. Main, D.L. Newman, R.E. Ergun, Conditions for establishing quasistable double layers in the Earth’s auroral upward current region. Phys. Plasmas 17, 122901 (2010)

    ADS  Google Scholar 

  • A.J. Mallinckrodt, C.W. Carlson, Relations between transverse electric fields and field-aligned currents. J. Geophys. Res. 83, 1426 (1978)

    ADS  Google Scholar 

  • O. Marghitu, B. Klecker, J.P. McFadden, The anisotropy of precipitating auroral electrons: a FAST case study. Adv. Space Res. 38, 1694–1701 (2006). https://doi.org/10.1016/j.asr.2006.03.028

    Article  ADS  Google Scholar 

  • G. Marklund, L. Blomberg, C.-G. Fälthammar, P.-A. Lindqvist, On intense diverging electric fields associated with black aurora. Geophys. Res. Lett. 21, 1859–1862 (1994)

    ADS  Google Scholar 

  • G.T. Marklund, N. Ivchenko, T. Karlsson et al., Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere. Nature 414, 724–727 (2001a). https://doi.org/10.1038/414724a

    Article  ADS  Google Scholar 

  • G.T. Marklund, S. Sadeghi, J.A. Cumnock, T. Karlsson, P.-A. Lindqvist, H. Nilsson, A. Masson, A. Farakerley, E. Lucek, J. Pickett, Y. Zhang, Evolution in space and time of the quasi-static acceleration potential of inverted-V aurora and its interaction with Alfvénic boundary processes. J. Geophys. Res. 116, A00K13 (2001b). https://doi.org/10.1029/2011JA016237

    Article  Google Scholar 

  • G. Marklund, T. Johansson, S. Lileo, T. Karlsson, Cluster observations of an auroral potential and associated field-aligned current reconfiguration during thinning of the plasma sheet boundary layer. J. Geophys. Res. 112, A01208 (2007). https://doi.org/10.1029/2006JA011804

    Article  ADS  Google Scholar 

  • G.T. Marklund et al., Cluster multipoint study of the acceleration potential pattern and electrodynamics of an auroral surge and its associated horn arc. J. Geophys. Res. 117, A10223 (2012). https://doi.org/10.1029/2012JA018046

    Article  ADS  Google Scholar 

  • J.P. McFadden, C.W. Carlson, M.H. Boehm, Field-aligned electron precipitation at the edge of an arc. J. Geophys. Res. 91, 1723 (1986)

    ADS  Google Scholar 

  • J.P. McFadden et al., Spatial structure and gradients of ion beams observed by FAST. Geophys. Res. Lett. 25, 2021–2024 (1998)

    ADS  Google Scholar 

  • J.P. McFadden, C.W. Carlson, R.E. Ergun, Microstructure of the auroral acceleration region as observed by FAST. J. Geophys. Res. 104, 14453–14480 (1999)

    ADS  Google Scholar 

  • C. McIlwain, Direct measurement of the particles producing visible aurora. J. Geophys. Res. 65, 2727 (1960)

    ADS  Google Scholar 

  • D.M. Miles, I.R. Mann, I.P. Pakhotin, J.K. Burchill, A.D. Howarth, D.J. Knudsen, R.L. Lysak, D.D. Wallis, L.L. Cogger, A.W. Yau, Alfvénic dynamics and fine structuring of discrete auroral arcs: Swarm and e-POP observations. Geophys. Res. Lett. 45, 545–555 (2018). https://doi.org/10.1002/2017GL076051

    Article  ADS  Google Scholar 

  • R.H. Miller, G.V. Khazanov, Self-consistent electrostatic potential due to trapped plasma in the magnetosphere. Geophys. Res. Lett. 20, 1331 (1993)

    ADS  Google Scholar 

  • A. Miura, T. Sato, Numerical simulation of the global formation of auroral arcs. J. Geophys. Res. 85, 73 (1980)

    ADS  Google Scholar 

  • P. Mizera, J. Fennell, Signatures of electric fields from high and low altitude particles distributions. Geophys. Res. Lett. 4, 311–314 (1977)

    ADS  Google Scholar 

  • P.F. Mizera, D.J. Gorney, J.F. Fennell, Experimental verification of an S-shaped potential structure. J. Geophys. Res. 87, 1535–1539 (1982)

    ADS  Google Scholar 

  • H.M. Mott-Smith, I. Langmuir, The theory of collectors in gaseous discharges. Phys. Rev. 28, 727–763 (1926). https://doi.org/10.1103/PhysRev.28.727

    Article  ADS  Google Scholar 

  • F.S. Mozer, C.W. Carlson, M.K. Hudson, R.B. Torbert, B. Parady, J. Yatteau, M.C. Kelley, Observations of paired electrostatic shocks in the polar magnetosphere. Phys. Rev. Lett. 38, 292 (1977)

    ADS  Google Scholar 

  • F.S. Mozer, C.A. Cattell, M.K. Hudson, R.L. Lysak, M. Temerin, R.B. Torbert, Satellite measurements and theories of auroral particle acceleration. Space Sci. Rev. 27, 155 (1980)

    ADS  Google Scholar 

  • T.K. Nakamura, Parallel electric field of a mirror kinetic Alfvén wave. J. Geophys. Res. 105, 10,729 (2000)

    ADS  Google Scholar 

  • D.L. Newman, M.V. Goldman, R.E. Ergun, A. Mangeney, Formation of double layers and electron holes in a current-driven space plasma. Phys. Rev. Lett. 87(25), 255001 (2001)

    ADS  Google Scholar 

  • D.L. Newman, L. Andersson, M.V. Goldman, R.E. Ergun, N. Sen, Influence of suprathermal background electrons on strong auroral double layers: laminar and turbulent regimes. Phys. Plasmas 15(7), 072903 (2008)

    ADS  Google Scholar 

  • A. Olsson et al., Freja studies of the current-voltage relation in substorm-related events. J. Geophys. Res. 103, 4285–4301 (1998)

    ADS  Google Scholar 

  • I.P. Pakhotin, I.R. Mann, R.L. Lysak, D.J. Knudsen, J.W. Gjerloev, I.J. Rae, C. Forsyth, K.R. Murphy, D.M. Miles, L.G. Ozeke, G. Balasis, Diagnosing the role of Alfvén waves in magnetosphere-ionosphere coupling: Swarm observations of large amplitude nonstationary magnetic perturbations during an interval of northward IMF. J. Geophys. Res., Space Phys. 123 (2018). https://doi.org/10.1002/2017JA024713

  • M. Palmroth et al., ULF foreshock under radial IMF: THEMIS observations and global kinetic simulation Vlasiator results compared. J. Geophys. Res. Space Phys. 120, 8782–8798 (2015). https://doi.org/10.1002/2015JA021526

    Article  ADS  Google Scholar 

  • K. Papadopoulos, A review of anomalous resistivity for the ionosphere. Rev. Geophys. Space Phys. 15, 113 (1977)

    ADS  Google Scholar 

  • N. Partamies, M. Syrjäsuo, E. Donovan, M. Connors, D. Charrois, D. Knudsen, Z. Kryzanowsky, Observations of the auroral width spectrum at kilometre-scale size. Ann. Geophys. 28, 711 (2010)

    ADS  Google Scholar 

  • G. Paschmann, S. Haaland, R. Treumann (eds.), Auroral Plasma Physics (Kluwer Academic Publishers, Dordrecht, 2003)

    Google Scholar 

  • A.M. Persoon, D.A. Gurnett, W.K. Peterson, J.H. Waite, J.L. Burch, J.L. Green, Electron density depletions in the nightside auroral zone. J. Geophys. Res. 93, 1871 (1988)

    ADS  Google Scholar 

  • H. Persson, Electric field parallel to the magnetic field in a low-density plasma. Phys. Fluids 9, 1090–1098 (1966). https://doi.org/10.1063/1.1761807

    Article  ADS  Google Scholar 

  • V. Pierrard, G.V. Khazanov, J.F. Lemaire, Current voltage relationship. J. Atmos. Sol.-Terr. Phys. 69, 2048–2057 (2007). https://doi.org/10.1016/j.jastp.2007.08.005

    Article  ADS  Google Scholar 

  • M.A. Raadu, J.J. Rasmussen, Dynamical aspects of electrostatic double layers. Astrophys. Space Sci. 144, 43–71 (1988)

    ADS  Google Scholar 

  • R. Rankin, J.C. Samson, V.T. Tikhonchuk, Parallel electric fields in dispersive shear Alfvén waves in the dipolar magnetosphere. Geophys. Res. Lett. 26, 3601 (1999)

    ADS  Google Scholar 

  • R. Rankin, D. Gillies, A.W. Degeling, On the relationship between shear Alfven waves, auroral electron acceleration, and field line resonances. Space Sci. Rev. (2020), submitted

  • P. Reiff, H. Collin, J. Craven, J. Burch, J. Winningham, E. Shelley, L. Frank, M. Friedman, Determination of auroral electrostatic potentials using high- and low-altitude particle distributions. J. Geophys. Res. 93, 7441–7465 (1988)

    ADS  Google Scholar 

  • S. Robertson, Kinetic model for an auroral double layer that spans many gravitational scale heights. Phys. Plasmas 21, 122901 (2014). https://doi.org/10.1063/1.4903337

    Article  ADS  Google Scholar 

  • A.J. Russell, A.N. Wright, A.V. Streltsov, Production of small-scale Alfvén waves by ionospheric depletion, nonlinear magnetosphere-ionosphere coupling and phase mixing. J. Geophys. Res. Space Phys. 118(4), 1450–1460 (2013)

    ADS  Google Scholar 

  • A.J. Russell, T. Karlsson, A.N. Wright, Magnetospheric signatures of ionospheric density cavities observed by Cluster. J. Geophys. Res. Space Phys. 120(3), 1876–1887 (2015)

    ADS  Google Scholar 

  • P.H. Rutherford, E.A. Frieman, Drift instabilities in general magnetic field configurations. Phys. Fluids 11, 569–585 (1968)

    ADS  Google Scholar 

  • S. Sadeghi, G.T. Marklund, T. Karlsson, P.-A. Lindqvist, H. Nilsson, O. Marghitu, A. Fazakerley, E.A. Lucek, Spatiotemporal features of the auroral acceleration region as observed by Cluster. J. Geophys. Res. 116, A00K19 (2011). https://doi.org/10.1029/2011JA016505

    Article  Google Scholar 

  • H. Saito et al., An overview and initial in-orbit status of “INDEX” satellite. IEIC Tech. Rep. 105, 29–34 (2005)

    Google Scholar 

  • T. Sakanoi et al., Relationship between field-aligned currents and inverted-V parallel potential drops observed at midaltitudes. J. Geophys. Res. 100, 19343–19360 (1995)

    ADS  Google Scholar 

  • T. Sato, A theory of quite auroral arcs. J. Geophys. Res. 83, 1042–1048 (1978)

    ADS  Google Scholar 

  • H. Schamel, S. Bujabarua, Analytical double layers. Phys. Fluids 26, 190 (1983). https://doi.org/10.1063/1.864006

    Article  ADS  MATH  Google Scholar 

  • J. Semeter, J. Vogt, G. Haerendel, K. Lynch, R. Arnoldy, Persistent quasiperiodic precipitation of suprathermal ambient electrons in decaying auroral arcs. J. Geophys. Res. 106(A7), 12,863–12,874 (2001)

    ADS  Google Scholar 

  • C.E. Seyler, Nonlinear 3-d evolution of bounded kinetic Alfvén waves due to shear flow and collisionless tearing instability. Geophys. Res. Lett. 15, 756 (1988)

    ADS  Google Scholar 

  • C.E. Seyler, A mathematical model of the structure and evolution of small-scale discrete auroral arcs. J. Geophys. Res. 95, 17,199 (1990)

    ADS  Google Scholar 

  • C.E. Seyler, K. Liu, Particle energization by oblique inertial Alfvén waves in the auroral region. J. Geophys. Res. 112, A09302 (2007). https://doi.org/10.1029/2007JA012412

    Article  ADS  Google Scholar 

  • R. Sharp, R. Johnson, E. Shelley, Observation of an ionospheric acceleration mechanism producing energetic (keV) ions primarily normal to the geomagnetic field direction. J. Geophys. Res. 82, 3324–3328 (1977)

    ADS  Google Scholar 

  • E. Shelley, R. Sharp, R. Johnson, Satellite observations of an ionospheric acceleration mechanism. Geophys. Res. Lett. 3, 654–656 (1976)

    ADS  Google Scholar 

  • N. Singh, Dynamically evolving double layers and density depletions. J. Geophys. Res. Space Phys. 108(A8), 1322 (2003)

    ADS  Google Scholar 

  • N. Singh, K. Arcot, B.E. Wells, Parallel electric fields in mixing hot and cold plasmas in the auroral downward current region: Double layers and ambipolar fields. J. Geophys. Res. Space Phys. 114(A3) (2009). https://doi.org/10.1029/2008JA013591

  • N. Singh, S. Araveti, E.B. Wells, Mesoscale PIC simulation of double layers and electron holes affecting parallel and transverse accelerations of electrons and ions. J. Geophys. Res. 116, A00K09 (2011). https://doi.org/10.1029/2010JA016323

    Article  ADS  Google Scholar 

  • Y. Song, R.L. Lysak, Alfvénon, driven reconnection and the direct generation of field-aligned current. Geophys. Res. Lett. 21, 1755 (1994)

    ADS  Google Scholar 

  • Y. Song, R.L. Lysak, Paradigm transition in cosmic plasma physics, magnetic reconnection and the generation of field-aligned current, in Magnetospheric Current Systems, ed. by S.-I. Ohtani et al. AGU Monograph, vol. 118 (American Geophysical Union, Washington, 2000), p. 11

    Google Scholar 

  • Y. Song, R.L. Lysak, The physics in the auroral dynamo regions and auroral particle acceleration. Phys. Chem. Earth 26, 33 (2001a)

    Google Scholar 

  • Y. Song, R.L. Lysak, Towards a new paradigm: from a quasi-steady description to a dynamical description of the magnetosphere. Space Sci. Rev. 95, 273 (2001b)

    ADS  Google Scholar 

  • Y. Song, R.L. Lysak, The displacement current and the generation of parallel electric fields. Phys. Rev. Lett. 96, 145002 (2006)

    ADS  Google Scholar 

  • Y. Song, R.L. Lysak, Dynamical generation of quasi-stationary alfvenic double layers and charge holes and unified theory of quasi-static and alfvenic auroral arc formation. Abstract SM23B-2555, in Fall Meeting, San Francisco, Dec. 14-18 (2015)

    Google Scholar 

  • D.P. Stern, One-dimensional models of quasi-neutral parallel electric fields. J. Geophys. Res. Space Phys. 86(A7), 5839–5860 (1981)

    ADS  Google Scholar 

  • A.V. Streltsov, On the Asymmetry Between Upward and Downward Field-Aligned Currents Interacting with the Ionosphere. J. Geophys. Res. Space Phys. 123 (2018). https://doi.org/10.1029/2018JA025826

  • A.V. Streltsov, T. Karlsson, Small-scale, localized electromagnetic waves observed by Cluster: result of magnetosphere-ionosphere interactions. Geophys. Res. Lett. 35, L22107 (2008)

    ADS  Google Scholar 

  • A. Streltsov, W. Lotko, Dispersive field line resonances on auroral field lines. J. Geophys. Res. 100, 19,457 (1995)

    ADS  Google Scholar 

  • A.V. Streltsov, W. Lotko, Small-scale electric fields in downward auroral current channels. J. Geophys. Res. Space Phys. 108(A7), 1289 (2003)

    ADS  Google Scholar 

  • A.V. Streltsov, W. Lotko, Coupling between density structures, electromagnetic waves and ionospheric feedback in the auroral zone. J. Geophys. Res. Space Phys. 113(A5) (2008). https://doi.org/10.1029/2007JA012594

  • A.V. Streltsov, G.T. Marklund, Divergent electric fields in downward current channels. J. Geophys. Res. Space Phys. 111(A7) (2006). https://doi.org/10.1029/2005JA011196

  • A.V. Streltsov, E.V. Mishin, On the existence of ionospheric feedback instability in the Earth’s magnetosphere-ionosphere system. J. Geophys. Res. Space Phys. 123, 8951–8957 (2018). https://doi.org/10.1029/2018JA025942

    Article  ADS  Google Scholar 

  • D. Summers, R.M. Thorne, A new tool for analyzing microinstabilities in space plasmas modeled by a generalized Lorentzian (kappa) distribution. J. Geophys. Res. 97, 16,827 (1992)

    ADS  Google Scholar 

  • D.W. Swift, On the formation of auroral arcs and the acceleration of auroral electrons. J. Geophys. Res. 80, 2096 (1975)

    ADS  Google Scholar 

  • D.W. Swift, An equipotential model for auroral arcs: the theory of two-dimensional laminar electrostatic shocks. J. Geophys. Res. 84, 6427 (1979)

    ADS  Google Scholar 

  • D.W. Swift, Simulation of auroral electron acceleration by inertial Alfven waves. J. Geophys. Res. 112, A12207 (2007). https://doi.org/10.1029/2007JA012423

    Article  ADS  Google Scholar 

  • D. Sydorenko, R. Rankin, The stabilizing effect of collision-induced velocity shear on the ionospheric feedback instability in Earth’s magnetosphere. Geophys. Res. Lett. 44, 6534–6542 (2017). https://doi.org/10.1002/2017GL073415

    Article  ADS  Google Scholar 

  • D. Sydorenko, R. Rankin, K. Kabin, Nonlinear effects in the ionospheric Alfvén resonator. J. Geophys. Res. 113, A10206 (2008). https://doi.org/10.1029/2008JA013579

    Article  ADS  Google Scholar 

  • M. Temerin, C.W. Carlson, Current-voltage relationship in the downward auroral current region. Geophys. Res. Lett. 25(13), 2365–2368 (1998)

    ADS  Google Scholar 

  • M. Temerin, C. Cattell, R. Lysak, M. Hudson, R.B. Torbert, F.S. Mozer, R.D. Sharp, P.M. Kintner, The small scale structure of electrostatic shocks. J. Geophys. Res. 86, 11,278 (1981)

    ADS  Google Scholar 

  • M. Temerin, K. Cerny, W. Lotko, F. Mozer, Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett. 48, 1175–1179 (1982)

    ADS  Google Scholar 

  • B.J. Thompson, R.L. Lysak, Electron acceleration by inertial Alfvén waves. J. Geophys. Res. 101, 5359 (1996)

    ADS  Google Scholar 

  • V.T. Tikhonchuk, R. Rankin, Electron kinetic effects in standing shear Alfvén waves in the dipolar magnetosphere. Phys. Plasmas 7, 2630 (2000)

    ADS  Google Scholar 

  • V.T. Tikhonchuk, R. Rankin, Parallel potential driven by a kinetic Alfvén wave on geomagnetic field lines. J. Geophys. Res. 107(A7), 1104 (2002). https://doi.org/10.1029/2001JA000231

    Article  Google Scholar 

  • K. Tsuruda, H. Oya, Introduction to the EXOS-D (Akebono) project. Geophys. Res. Lett. 18, 293 (1993)

    ADS  Google Scholar 

  • J.A. Van Allen, Proc. Natl. Acad. Sci. 43, 57 (1957)

    ADS  Google Scholar 

  • J. Vedin, K. Rönnmark, Electrostatic potentials in the downward auroral current region. J. Geopyhs. Res. 110 (2005). https://doi.org/10.1029/2005JA011083

  • J. Vedin, K. Rönnmark, Particle-fluid simulation of the auroral current circuit. J. Geophys. Res. 111, A12201 (2006). https://doi.org/10.1029/2006JA011826

    Article  ADS  Google Scholar 

  • J. Vedin, K. Rönnmark, C. Bunescu, O. Marghitu, Estimating properties of concentrated parallel electric fields from electron velocity distributions. Geophys. Res. Lett. 34, L16107 (2007). https://doi.org/10.1029/2007GL030162

    Article  ADS  Google Scholar 

  • T.-H. Watanabe, Feedback instability in the magnetosphere-ionosphere coupling system: revisited. Phys. Plasmas 17, 022904 (2010)

    ADS  Google Scholar 

  • T.-H. Watanabe, A unified model of auroral arc growth and electron acceleration in the magnetosphere-ionosphere coupling. Geophys. Res. Lett. 41 (2014). https://doi.org/10.1002/2014GL061166

  • C.E.J. Watt, R. Rankin, Electron trapping in shear Alfvén waves that power the aurora. Phys. Rev. Lett. 102, 045002 (2009)

    ADS  Google Scholar 

  • C.E.J. Watt, R. Rankin, Do magnetospheric shear Alfvén waves generate sufficient electron energy flux to power the aurora? J. Geophys. Res. 115, A07224 (2010). https://doi.org/10.1029/2009JA015185

    Article  ADS  Google Scholar 

  • C.E.J. Watt, R. Rankin, Alfvén wave acceleration of auroral electrons in warm magnetospheric plasma, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, ed. by A. Keiling, E. Donovan, F. Bagenal, T. Karlsson. AGU Monograph, vol. 197 (American Geophysical Union, Washington, 2012), p. 251

    Google Scholar 

  • C.E.J. Watt, R. Rankin, R. Marchand, Kinetic simulations of electron response to shear Alfvén waves in magnetospheric plasmas. Phys. Plasmas 11, 1277–1284 (2004)

    ADS  Google Scholar 

  • D.R. Weimer et al., Auroral zone electric field from DE 1 and 2 at magnetic conjunctions. J. Geophys. Res. 90, 7479–7494 (1985)

    ADS  Google Scholar 

  • D.R. Weimer et al., The current-voltage relationship in auroral current sheets. J. Geophys. Res. 92, 187–194 (1987)

    ADS  Google Scholar 

  • E.C. Whipple, The signature of parallel electric fields in a collisionless plasma. J. Geophys. Res. 82, 1525 (1977)

    ADS  Google Scholar 

  • J.R. Winckler, L. Peterson, R. Arnoldy, R. Hoffman, X-rays from visible aurorae at Minneapolis. Phys. Rev. 110, 1221 (1958)

    ADS  Google Scholar 

  • D.-J. Wu, D.Y. Sang, C.-G. Fälthammar, An analytical solution of finite-amplitude solitary kinetic Alfvén waves. Phys. Plasmas 2, 4476 (1995)

    ADS  Google Scholar 

  • J.R. Wygant, A. Keiling, C.A. Cattell, R.L. Lysak, M. Temerin, F.S. Mozer, C.A. Kletzing, J.D. Scudder, A.V. Streltsov, W. Lotko, C.T. Russell, Evidence for kinetic Alfvén waves and parallel electron energization at 4–6 RE altitudes in the plasma sheet boundary layer. J. Geophys. Res. 107(A8), 1201 (2002). https://doi.org/10.1029/2001JA900113

    Article  Google Scholar 

  • M. Zettergren, J. Semeter, Ionospheric plasma transport and loss in auroral downward current regions. J. Geophys. Res. Space Phys. 117, A06306 (2012)

    ADS  Google Scholar 

  • M. Zettergren, J. Semeter, B. Burnett, W. Oliver, C. Heinselman, P.L. Blelly, M. Diaz, Dynamic variability in F-region ionospheric composition at auroral arc boundaries. Ann. Geophys. 28(2) (2010). https://doi.org/10.5194/angeo-28-651-2010

  • M.D. Zettergren, J.L. Semeter, H. Dahlgren, Dynamics of density cavities generated by frictional heating: formation, distortion, and instability. Geophys. Res. Lett. 42(23), 10–120 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the International Space Science Institute (ISSI), Bern, for organization of the reviews and for support of the team meeting. RLL and YS have been supported by NSF grant AGS 1558134. MME acknowledges support from the Romanian Ministry of Research (PCCDI Grant VESS), the Romanian Space Agency (STAR project 182-OANA), the Belgian Solar Terrestrial Center of Excellence (STCE), the BRAIN-BE project MOMA BR/175/A2/MOMA. OM acknowledges support by SIFACIT contract 4000118383/16/I–EF with ESA and STAR EXPRESS contract 119/2017 with Romanian Space Agency. THW is supported by JSPS KAKENHI Grant Number JP16H04086 and JP17H01177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lysak.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Auroral Physics

Edited by David Knudsen, Joe Borovsky, Tomas Karlsson, Ryuho Kataoka and Noora Partmies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysak, R., Echim, M., Karlsson, T. et al. Quiet, Discrete Auroral Arcs: Acceleration Mechanisms. Space Sci Rev 216, 92 (2020). https://doi.org/10.1007/s11214-020-00715-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00715-5

Keywords

Navigation