Skip to main content
Log in

Quantum transport on large-scale sparse regular networks by using continuous-time quantum walk

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A large-scale sparse regular network (LSSRN) is a type of sparse regular graph that has been broadly studied in the field of complex networks. The conventional approach of eigendecomposition cannot be used to achieve quantum transport based on continuous-time quantum walks (CTQW) on LSSRNs. This work proposes a new approach, namely the counting of walks on an LSSRN, to investigate the characteristics of quantum transport based on CTQW. The estimations of transport probability indicate that (1) it is more likely for a node to return to itself in quantum transport than in classical transport, (2) with the increase in the network degree, the return probability decays more quickly and (3) the transport probability starting from a given vertex to another vertex decreases when the distance between them increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Williams, C.P.: Explorations in Quantum Computing. Springer, Berlin (2010)

    MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  3. Liu, Wen-Jie, Gao, Pei-Pei, Wen-Bin, Yu., Zhi-Guo, Qu, Yang, Ching-Nung: Quantum relief algorithm. Quantum Inf. Process. 17(10), 280 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  4. Liu, Wen-Jie, Wang, Hai-Bin, Yuan, Gong-Lin, Yong, Xu, Chen, Zhen-Yu., An, Xing-Xing, Ji, Fu-Gao, Gnitou, Gnim Tchalim: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15(2), 869–879 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. Liu, Wenjie, Gao, Peipei, Liu, Zhihao, Chen, Hanwu, Zhang, Maojun: A quantum-based database query scheme for privacy preservation in cloud environment. Security and Communication Networks 2019, (2019)

  6. Liu, Wen-Jie, Yong, Xu, Yang, Ching-Nung, Gao, Pei-Pei, Wen-Bin, Yu.: An efficient and secure arbitrary n-party quantum key agreement protocol using bell states. International Journal of Theoretical Physics 57(1), 195–207 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. Liu, Wenjie, Gao, Peipei, Wang, Yuxiang, Wenbin, Yu., Zhang, Maojun: A unitary weights based one-iteration quantum perceptron algorithm for non-ideal training sets. IEEE Access 7, 36854–36865 (2019)

    Article  Google Scholar 

  8. Mülken, Oliver, Blumen, Alexander: Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502(2), 37–87 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Physical review letters 92(18), 187902 (2004)

    Article  ADS  Google Scholar 

  10. Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10(11), 113019 (2008)

    Article  ADS  Google Scholar 

  11. Van Mieghem, Piet: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  12. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev.a, 58(2), 915–928 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  13. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70(2), 022314 (2004)

    Article  ADS  Google Scholar 

  14. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18), 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Galiceanu, M., Strunz, W.T.: Continuous-time quantum walks on multilayer dendrimer networks. Phys. Rev. e 94(2), 022307 (2016)

    Article  ADS  Google Scholar 

  16. Mülken, Oliver, Volta, Antonio: Asymmetries in symmetric quantum walks on two-dimensional networks. Phys. Rev. A 72(4), 440–450 (2005)

    Article  Google Scholar 

  17. Xin Ping Xu: Exact analytical results for quantum walks on star graphs. J. Phys. A: Math. Theor. 42(11), 115205 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Mülken, O., Pernice, V., Blumen, A.: Quantum transport on small-world networks: a continuous-time quantum walk approach. Phys. Rev. E 76(1 5 Pt), 051125 (2007)

    Article  ADS  Google Scholar 

  19. Agliari, E., Blumen, A., Mülken, O.: Dynamics of continuous-time quantum walks in restricted geometries. J. Phys. A: Math. Theor. 41(44), 445301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. Xu, X.P., Liu, F.: Coherent exciton transport on scale-free networks. New J. Phys. 10(12), 123012 (2008)

    Article  ADS  Google Scholar 

  21. Kulvelis, Nikolaj, Dolgushev, Maxim, Mülken, Oliver: Universality at breakdown of quantum transport on complex networks. Phys. Rev. Lett. 115(12), 120602 (2015)

    Article  ADS  Google Scholar 

  22. Avraham, D., Bollt, E.M., Tamon, C.: One-dimensional continuous-time quantum walks. Quantum Information Processing 3(1–5), 295–308 (2004)

    Article  MathSciNet  Google Scholar 

  23. McKay, B.D.: Expected eigenvalue distribution of a large regular graph. Linear Algebra Appl. 40, 203–216 (1981)

    Article  MathSciNet  Google Scholar 

  24. Hora, Akihito, Obata, Nobuaki: Quantum Probability and Spectral Analysis of Graphs. Springer, Berlin (2007)

    MATH  Google Scholar 

  25. DM Cvetković, M Doob, and HORST SACHS. Spectra of graphs–theory and application, 1980

  26. Feller, William: An Introduction to Probability Theory and its Applications, vol. 1. Wiley, New York (1968)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61871120 and 61502101), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20191259), the Six Talent Peaks Project of Jiangsu Province (Grant No. XYDXX-003), the Natural Science Foundation of Anhui Province, China (Grant No. 1708085MF162), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanwu Chen or Zhihao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, H., Wu, M. et al. Quantum transport on large-scale sparse regular networks by using continuous-time quantum walk. Quantum Inf Process 19, 235 (2020). https://doi.org/10.1007/s11128-020-02731-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02731-4

Keywords

Navigation