Skip to main content
Log in

A Quantum Richardson–Lucy image restoration algorithm based on controlled rotation operation and Hamiltonian evolution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The problems of the real-time and high-precision image processing, even the powerful classical computers and their algorithms, are not satisfactory solution. With the emerging quantum technology, quantum image representation that shines can ease these solutions. The quantum Richardson–Lucy algorithm is proposed on controlled rotation operation and Hamiltonian evolution. To begin with, a flexible representation of the quantum image model is used as the basis of image representation, and the amplitude is manipulated by controlled rotation gate. Then, the controlled rotation operation is completed, and then, the algorithm only needs the quantum state on the first quantum register, and the algorithm constructs an quantum gate by Hamiltonian evolution on the register, which is to realize the quantum gate Richardson–Lucy function. Finally, the quantum state after controlled rotation is further operated by the quantum gate constructed by non-sparse Hamiltonian evolution technique, and all quantum states storing color information are reduced to clear quantum images. The simulation results show that the algorithm has the best effect on motion blur, and the peak signal-to-noise ratio can reach 31.3985 under small blur degree. The processing result of Gaussian noise is worse than that of pure motion blur, with a peak signal-to-noise ratio of 26.5232.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Venegas-Andraca, S.E., Ball, J.L.: Storing Images in engtangled quantum systems. (2003), arXiv:quantph/0402085

  2. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference Quantum Information and Computation, vol. 5105, pp. 137–147 (2003). https://doi.org/10.1117/12.485960

  3. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  4. Klappenecker, A., Rötteler, M.: Discrete cosine transforms on quantum computers. In: Proceedings of the IEEER8-EURASIP Symposium on Image and Signal Processing and Analysis (ISPA01), pp. 464-468, Pula, Croatia (2001)

  5. Tseng, C.C., Hwang, T.M.: Quantum circuit design of \(8\times 8\) discrete cosine transforms using its fast computation flow graph. In: IEEE International Symposium on Circuits and Systems, pp. 828–831 (2005)

  6. Latorre, J.I.: Image compression and entanglement. (2005), arXiv:quant-ph/0510031

  7. Shi, P., Li, N.C., Wang, S.M., Liu, Z., Ren, M.R., Ma, H.Y.: Quantum multi-user broadcast protocol for the platform as a service model. Sensors 19(23), 5257 (2019)

    ADS  Google Scholar 

  8. Ma, H.Y., Teng, J.K., Hu, T., Shi, P., Wang, S.M.: Co-communication Protocol of Underwater Sensor Networks with Quantum and Acoustic Communication Capabilities. Wirel. Pers. Commun. 113, 337–347 (2020)

    Google Scholar 

  9. Caraiman, S., Manta, V.I.: New applications of quantum algorithms to computer graphics: the quantum random sample consensus algorithm. In: Proceedings of the 6th ACM conference on Computing frontiers, pp. 81–88. Ischia, Italy. ACM, New York, (2009)

  10. Curtis, D., Meyer, D.A.: Towards quantum template matching. Proc. SPIE 5161, 134–141 (2004)

    ADS  Google Scholar 

  11. Kak, S.: On quantum neural computing. Inf. Sci. 83(3), 143–160 (1995)

    MathSciNet  Google Scholar 

  12. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Publishing House of Electronics Industry, Beijing (2002)

    Google Scholar 

  13. Venegas-Andraca S E, Ball J L.: Storing images in entangled quantum systems. arXiv: quant-ph/0402085, (2003)

  14. Venegas-Andraca, S.E., Ball, J.L., Burnett, K., Bose, S.: Quantum walks with entangled coins. New J. Phys. 7(1), 221 (2005)

    ADS  MathSciNet  Google Scholar 

  15. Venegas-Andraca, S.E, Bose, S.: Quantun computation and image processing: New trends in artificial intelligence. In: Proceeding of the International Conference on Artificial Intelligence IJCAI-03, pp. 1563-1564. Acapulco, Mexico, (2003)

  16. Latorre, J.I.: Image compression and entanglement. arXiv: quant-ph/0510031, (2005)

  17. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Liu, K., Zhang, Y., Lu, K., Wang, X.: Restoration for Noise Removal in Quantum Images. Int. J. Theor. Phys. 56(9), 2867–2886 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Liu, J., Yuan, H.: Control-enhanced multiparameter quantum estimation. Phys. Rev. A 96(4), 042114 (2017)

    ADS  Google Scholar 

  20. Liu, J., Yuan, H.: Quantum parameter estimation with optimal control. Phys. Rev. A 96(1), 012117 (2017)

    ADS  Google Scholar 

  21. Banchi, L., Pancotti, N., Bose, S.: Quantum gate learning in qubit networks: Toffoli gate without time-dependent control. npj Quantum Information 21(1), 1–6 (2016)

  22. Tian, J., Leng, Y., Zhao, Z., Xia, Y., Sang, Y., Hao, P., Zhan, J., Li, M., Liu, H.: Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano Energy 11, 419–427 (2015)

    Google Scholar 

  23. Chongqiang, Y., Tianyu, Y.: Circular Multi-Party Quantum Private Comparison with n-Level Single-Particle States. Int. J. Theor. Phys. 58, 1282 (2019)

    MathSciNet  Google Scholar 

  24. Qin, L.-G., Wang, Z.-Y., Wu, S.-C., Gong, S.-Q., Ma, H.-Y., Jing, J.: Vacuum-induced quantum memory in an opto-electromechanical system. Opt. Commun. 410, 102–107 (2018)

    ADS  Google Scholar 

  25. Gong, L., Qiu, K., Deng, C., Zhou, N.: An image compression and encryption algorithm based on chaotic system and compressive sensing. Opt. Laser Technol. 115, 257–267 (2019)

    ADS  Google Scholar 

  26. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    ADS  Google Scholar 

  27. Ma, H.Y., Xu, P.A., Shao, C.S., Chen, L.B., Li, J.X., Pan, Q.: Quantum private query based on stable error correcting code in the case of noise. Wirel. Pers. Commun. 58(12), 4241–4248 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Gao, F., Qin, S., Huang, W., Wen, Q.: Quantum private query: a new kind of practical quantum cryptographic protocol. Sci. China (Physics, Mechanics and Astronomy) 62(07), 10–21 (2019)

  29. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412, 14061418 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Sun, B., Le, P.Q., Iliyasu, A.M., Yan, F., Garcia, J.A., Dong, F., Hirota, K.: A multi-channel representation for images on quantum computersusingtheRGBcolorspace. In: Proceedings of the IEEE 7th International Symposium on Intelligent Signal Processing, 160165 (2011)

  31. Yan, F., Le, P.Q., Iliyasu, A.M., Sun, B., Garcia, J.A., Dong, F., Hirota, K.: Assessing the similarity of quantum images based on probability measurements. In: IEEE Congress on Evolutionary Computation, p. 16 (2012)

  32. Caraiman, S., Manta, V.I.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 4660 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126149 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Song, X.H., Wang, S., Liu, S., Ellatif, A.A., Niu, X.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 36893706 (2013)

    MathSciNet  Google Scholar 

  35. Zhou, R., Wu, Q., Zhang, M., Shen, C.: Quantum image encryption and decryption algorithms based on quantum image geometric tranformations. Int. J. Theor. Phys. 52(6), 18021817 (2013)

    Google Scholar 

  36. Zhou, N., Hu, Y., Gong, L., Li, G.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 16(6), 164 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Wu, G.-T., Zhou, N.-R., Gong, L.-H., Liu, S.-Q.: Quantum dialogue protocols with identification over collection noisy channel without information leakage. Acta Phys. Sin. 63(06), 060302 (2014)

    Google Scholar 

  38. Qin, L.-G., Wang, Z.-Y., Ma, H.-Y., Wang, S.-M., Gong, S.-Q.: Electrically controlled optical switch in the hybrid opto-electromechanical system. Chin. Phys. B 26(12), 128502 (2017)

    ADS  Google Scholar 

  39. Zhou, N., Chen, W., Yan, X., Wang, Y.: Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quantum Inf. Process. 17(6), 137 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Chen, L.-Q., Sheng, Y.-B., Zhou, L.: Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit. Chin. Phys. B 28(1), 1056–1674 (2019)

    Google Scholar 

  41. Wang, M.-H., Cai, Q.-Y.: High-fidelity quantum cloning of two nonorthogonal quantum states via weak measurements. Phys. Rev. A 99(1), 012324 (2019)

    ADS  Google Scholar 

  42. Mo, X.-T., Xue, Z.-Y.: Single-step multipartite entangled states generation from coupled circuit cavities. Front. Phys. 14(3), 31602 (2019)

    ADS  Google Scholar 

  43. Yang, Y.-G., Gao, S., Li, D., Zhou, Y.-H., Shi, W.-M.: Three-party quantum secret sharing against collective noise. Quantum Inf. Process. 18(7), 215 (2019)

    ADS  MathSciNet  Google Scholar 

  44. Li, B.-M., Hu, M.-L., Fan, H.: Quantum coherence. Acta Phys. Sin. 68(3), 030304 (2019)

    MathSciNet  Google Scholar 

  45. Cheng, L.-Y., Guo, Q., Wang, H.-F., Zhang, S.: Direct entanglement measurement of Werner state with cavity-assisted spin-photon interaction system. Quantum Inf. Process. 18(7), 214 (2019)

    ADS  Google Scholar 

  46. Li, Y., Jin, X.-M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Yang, L., Ma, H.-Y., Zheng, C., Ding, X.-L., Gao, J.-C., Long, G.-L.: Quantum communication scheme based on quantum teleportation. Acta Phys. Sin. 66(23), 230303 (2017)

    Google Scholar 

  48. Ma, H.-Y., Qin, G.-Q., Fan, X.-K., Chu, P.-C.: Quantum network direct communication protocol over noisy channel. Acta Phys. Sin. 64(16), 160306 (2015)

    Google Scholar 

  49. lucy, L.B.: An iterative technique for the retufication of observed distribution. Astron. J. 79(6), 745–754 (1974)

  50. White, R.L.: Image restoration using the damped Rechardson-Lucy method. Proc. SPIE 2198, 1342–1348 (1994)

    ADS  Google Scholar 

  51. Venegas-Andraca, S.E, Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Conmputation, pp. 137-150. Orlando, FL, (2003)

  52. Li, P., Song, K., Er-long, Y.: Controlled-rotation gate-based quantum neural networks model algorithm with apllication. Control Decis. 26(6), 898–901 (2011)

    MathSciNet  Google Scholar 

  53. Liu, J., Jing, X., Wang, X.: Phase-matching condition for enhancement of phase sensitivity in quantum metrology. Phys. Rev. A 88(4), 042316 (2013)

    ADS  Google Scholar 

  54. Liu, J., Yuan, H., Lu, X., Wang, X.: Quantum Fisher information matrix and multiparameter estimation. J. Phys. A Math. Theor. 53(2), 023001 (2019)

    ADS  MathSciNet  Google Scholar 

  55. Dowling, J.P., Seshadreesan, K.P.: Quantum optical technologies for metrology, sensing, and imaging. J. Lightwave Technol. 33(12), 2359–2370 (2015)

    ADS  Google Scholar 

  56. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    ADS  MathSciNet  Google Scholar 

  57. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270(2), 359–371 (2007). arXiv: quant-ph/0508139

    ADS  MathSciNet  MATH  Google Scholar 

  58. Childs, A.M.: On the relationship between continuous and discrete-time quantum walk. (2008), arXiv: 0810.0312

Download references

Acknowledgements

The work was supported by the Shandong Province Higher Educational Science and Technology Program (Grant No. J18KZ012), and the National Natural Science Foundation of China (Grant No.11975132,61772295), and the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2019YQ01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingkui Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., He, Z., Xu, P. et al. A Quantum Richardson–Lucy image restoration algorithm based on controlled rotation operation and Hamiltonian evolution. Quantum Inf Process 19, 237 (2020). https://doi.org/10.1007/s11128-020-02723-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02723-4

Keywords

Navigation