Skip to main content
Log in

Performance improvement of plug-and-play dual-phase-modulated continuous-variable quantum key distribution with quantum catalysis

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Continuous-variable quantum key distribution based on plug-and-play dual-phase-modulated coherent-states (DPMCS) protocol has been proved to be equivalent to the one-way Gaussian-modulated coherent-states protocol, but it is not just limited to this. This protocol can effectively against the LO-aimed attacks and maintain the system robust. However, the maximum transmission distance of the protocol is restricted due to its large excess noise. In this paper, we enhance the plug-and-play DPMCS protocol using quantum catalysis operation, which can be implemented by the existing technologies. To further highlight the advantage of the implementation of quantum catalysis operation, we make performance comparison not only between the proposed protocol and the original scheme but also the single-photon subtraction-based (SPS) plug-and-play DPMCS protocol. Security analysis shows that the proposed protocol can extend the maximum transmission distance up to hundreds of kilometers even under the effect of the imperfect source noise and show more excellent performance than the SPS-based plug-and-play DPMCS protocol. Furthermore, we also take the finite-size effect into consideration and thus achieve more practical results than those obtained in the asymptotic limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8(8), 595 (2014)

    ADS  Google Scholar 

  2. Pirandola, S., Andersen, U. L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D, Gehring, T., Lupo, C., Ottaviani, C., Pereira, J.: Advances in quantum cryptography. arXiv:1906.01645 (2019)

  3. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    ADS  Google Scholar 

  4. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    ADS  Google Scholar 

  5. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    ADS  Google Scholar 

  6. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238 (2003)

    ADS  Google Scholar 

  7. Pirandola, S., Braunstein, S.L., Lloyd, S.: Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett. 101(20), 200504 (2008)

    ADS  Google Scholar 

  8. Renner, R., Cirac, J.I.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102(11), 110504 (2009)

    ADS  Google Scholar 

  9. Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81(6), 062343 (2010)

    ADS  Google Scholar 

  10. Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109(10), 100502 (2012)

    ADS  Google Scholar 

  11. Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114(7), 070501 (2015)

    ADS  Google Scholar 

  12. Leverrier, A.: Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 118(20), 200501 (2017)

    ADS  Google Scholar 

  13. Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)

    ADS  Google Scholar 

  14. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7(5), 378 (2013)

    ADS  Google Scholar 

  15. Zhang, Y., Li, Z., Chen, Z., Weedbrook, C., Zhao, Y., Wang, X., Huang, Y., Xu, C., Zhang, X., Wang, Z., Wang, G., Yu, S., Guo, H.: Continuous-variable QKD over 50 km commercial fiber. Quantum Sci. Technol. 4, 035006 (2019)

    ADS  Google Scholar 

  16. Huang, D., Huang, P., Li, H., Wang, T., Zhou, Y., Zeng, G.: Field demonstration of a continuous-variable quantum key distribution network. Opt. Lett. 41(15), 3511–3514 (2016)

    ADS  Google Scholar 

  17. Huang, J.Z., Weedbrook, C., Yin, Z.Q., Wang, S., Li, H.W., Chen, W., Guo, G.C., Han, Z.F.: Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack. Phys. Rev. A 87(6), 062329 (2013)

    ADS  Google Scholar 

  18. Ma, X.C., Sun, S.H., Jiang, M.S., Liang, L.M.: Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol. Phys. Rev. A 87(5), 052309 (2013)

    ADS  Google Scholar 

  19. Jouguet, P., Kunz-Jacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 87(6), 062313 (2013)

    ADS  Google Scholar 

  20. Qin, H., Kumar, R., Alléaume, R.: Saturation attack on continuous-variable quantum key distribution system. Proc. SPIE 8899, 88990N (2013)

    ADS  Google Scholar 

  21. Ma, X.C., Sun, S.H., Jiang, M.S., Liang, L.M.: Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A 88(2), 022339 (2013)

    ADS  Google Scholar 

  22. Qi, B., Lougovski, P., Pooser, R., Grice, W., Bobrek, M.: Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X 5(4), 041009 (2015)

    Google Scholar 

  23. Soh, D.B., Brif, C., Coles, P.J., Lütkenhaus, N., Camacho, R.M., Urayama, J., Sarovar, M.: Self-referenced continuous-variable quantum key distribution protocol. Phys. Rev. X 5(4), 041010 (2015)

    Google Scholar 

  24. Huang, D., Huang, P., Lin, D., Wang, C., Zeng, G.: High-speed continuous-variable quantum key distribution without sending a local oscillator. Opt. Lett. 40(16), 3695–3698 (2015)

    ADS  Google Scholar 

  25. Huang, D., Huang, P., Wang, T., Li, H., Zhou, Y., Zeng, G.: Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol. Phys. Rev. A 94(3), 032305 (2016)

    ADS  Google Scholar 

  26. Wu, X., Wang, Y., Liao, Q., Zhong, H., Guo, Y.: Simultaneous classical communication and quantum key distribution based on plug-and-play configuration with an optical amplifier. Entropy 21(4), 333 (2019)

    MathSciNet  ADS  Google Scholar 

  27. Bartley, T.J., Crowley, P.J., Datta, A., Nunn, J., Zhang, L., Walmsley, I.: Strategies for enhancing quantum entanglement by local photon subtraction. Phys. Rev. A 87(2), 022313 (2013)

    ADS  Google Scholar 

  28. Wu, J., Liu, S., Hu, L., Huang, J., Duan, Z., Ji, Y.: Improving entanglement of even entangled coherent states by a coherent superposition of photon subtraction and addition. J. Opt. Soc. Am. B 32(11), 2299–2307 (2015)

    ADS  Google Scholar 

  29. Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, P.: Increasing entanglement between Gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98(3), 030502 (2007)

    ADS  Google Scholar 

  30. Huang, P., He, G., Fang, J., Zeng, G.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87(1), 012317 (2013)

    ADS  Google Scholar 

  31. Wu, X.D., Wang, Y.J., Zhong, H., Liao, Q., Guo, Y.: Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction. Front. Phys. 14(4), 41501 (2019)

    ADS  Google Scholar 

  32. Peng, Q., Wu, X., Guo, Y.: Improving eight-state continuous variable quantum key distribution by applying photon subtraction. Appl. Sci. 9(7), 1333 (2019)

    Google Scholar 

  33. Li, Z., Zhang, Y., Wang, X., Xu, B., Peng, X., Guo, H.: Non-Gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution. Phys. Rev. A 93(1), 012310 (2016)

    ADS  Google Scholar 

  34. Liao, Q., Guo, Y., Huang, D., Huang, P., Zeng, G.H.: Long-distance continuous-variable quantum key distribution using non-Gaussian state-discrimination detection. New J. Phys. 20, 023015 (2018)

    ADS  Google Scholar 

  35. Ma, H.X., Huang, P., Bai, D.Y., Wang, S.Y., Bao, W.S., Zeng, G.: Continuous-variable measurement-device-independent quantum key distribution with photon subtraction. Phys. Rev. A 97(4), 042329 (2018)

    ADS  Google Scholar 

  36. Guo, Y., Liao, Q., Wang, Y.J., Huang, D., Huang, P., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A 95, 032304 (2017)

    ADS  Google Scholar 

  37. Zhao, Y., Zhang, Y., Xu, B., Yu, S., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction. Phys. Rev. A 97(4), 042328 (2018)

    ADS  Google Scholar 

  38. Lvovsky, A.I., Mlynek, J.: Quantum-optical catalysis: generating nonclassical states of light by means of linear optics. Phys. Rev. Lett. 88(25), 250401 (2002)

    ADS  Google Scholar 

  39. Guo, Y., Ye, W., Zhong, H., Liao, Q.: Continuous-variable quantum key distribution with non-Gaussian quantum catalysis. Phys. Rev. A 99(3), 032327 (2019)

    ADS  Google Scholar 

  40. Lee, S.Y., Ji, S.W., Kim, H.J., Nha, H.: Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition. Phys. Rev. A 84(1), 012302 (2011)

    ADS  Google Scholar 

  41. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017)

    ADS  Google Scholar 

  42. Usenko, V.C., Filip, R.: Feasibility of continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A 81, 022318 (2010)

    ADS  Google Scholar 

  43. Shen, Y., Peng, X., Yang, J., Guo, H.: Continuous-variable quantum key distribution with Gaussian source noise. Phys. Rev. A 83, 052304 (2011)

    ADS  Google Scholar 

  44. Wu, X., Wang, Y., Li, S., Zhang, W., Huang, D., Guo, Y.: Security analysis of passive measurement-device-independent continuous-variable quantum key distribution with almost no public communication. Quantum Inf. Process. 18(12), 372 (2019)

    MathSciNet  ADS  Google Scholar 

  45. Derkach, I., Usenko, V.C., Filip, R.: Continuous-variable quantum key distribution with a leakage from state preparation. Phys. Rev. A 96, 062309 (2017)

    ADS  Google Scholar 

  46. Wu, X., Wang, Y., Huang, D.: Passive continuous-variable quantum secret sharing using a thermal source. Phys. Rev. A 101(2), 022301 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61801522) and National Nature Science Foundation of Hunan Province, China (Grant No. 2019JJ40352).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Duan Huang or Ying Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Calculation of asymptotic secret key rate

Now let us calculate the asymptotic secret key rate. Without loss of generality, we suppose Bob performs homodyne detection. Taking the reverse reconciliation into consideration, the asymptotic secret key rate is given by

$$\begin{aligned} K_{\mathrm{asy}}=P_{t}[\beta I(A:B)-\chi (A:E)], \end{aligned}$$
(8)

where I(A : B) represents the Shannon mutual information between Alice and Bob, \(\chi (A:E)\) represents the Holevo bound between Alice and Eve, \(\beta \) stands for the reconciliation efficiency for reverse reconciliation, and \(P_{t}\) stands for the success probability of implementing SSQC operation.

After passing through the untrusted quantum channel and Alice’s detection, the covariance matrix of \(\rho _{\mathrm{FBA}_{2}}\) reads

$$\begin{aligned} \varXi _{\mathrm{FBA}_{2}}=\left( \begin{array}{cc} \vartheta I_{2} &{} \kappa \sigma _{z} \\ \kappa \sigma _{z}&{} \lambda I_{2}\\ \end{array} \right) =\left( \begin{array}{cc} \mathrm{WI}_{2} &{} \sqrt{T}H\sigma _{z} \\ \sqrt{T}H\sigma _{z}&{} T(U+\chi _{\mathrm{line}})I_{2}\\ \end{array} \right) . \end{aligned}$$
(9)

The Shannon mutual information shared by Alice and Bob \(I_{AB}\) is given by

$$\begin{aligned} I_{AB}=\frac{1}{2}\log _{2}\frac{V_{B}}{V_{B|A}}, \end{aligned}$$
(10)

with \(V_{B}=(\vartheta +1)/2\), \(V_{A}=\lambda \), and

$$\begin{aligned} V_{B|A}=V_{B}-\frac{TH^{2}}{2V_{A}}. \end{aligned}$$
(11)

Since Eve can purify the system \(\mathrm{FBA}_{2}\) and Alice can employ her measurement to purify the system FBE, thus we have

$$\begin{aligned} \chi _{AE}=G[(\nu _{1}-1)/2]+G[(\nu _{2}-1)/2]-G[(\nu _{3}-1)/2], \end{aligned}$$
(12)

where \(G(x)=(x+1)\log _{2}(x+1)-x\log _{2}x\), and the symplectic eigenvalues \(\nu _{1,2}\) is given by

$$\begin{aligned} \nu ^{2}_{1,2}=\frac{1}{2}(\varDelta \pm \sqrt{\varDelta ^{2}-4D^{2}}), \end{aligned}$$
(13)

with

$$\begin{aligned} \varDelta= & {} \vartheta ^{2}+\lambda ^{2}-2\kappa ^{2}, \nonumber \\ D= & {} \vartheta \lambda -\kappa ^{2}. \end{aligned}$$
(14)

The symplectic eigenvalue \(\nu _{3}\) is expressed as \(\nu _{3}=\sqrt{\vartheta ^{2}-\vartheta \kappa ^{2}/\lambda }\). According to above analysis, we can calculate the asymptotic secret key rate in Eq. (8).

Appendix B: Finite-size secret key rate

For the proposed protocol, the finite-size secret key rate is given by [9]

$$\begin{aligned} K_{\mathrm{fin}}=\frac{nP_{t}}{N}[\beta I (A:B)-\chi _{\epsilon _{\mathrm{PE}}}(A:E)-\varDelta (n)], \end{aligned}$$
(15)

where \(\beta \) and I(A : B) are as the same as the aforementioned definitions. N stands for the total exchanged signals, and n stands for the number of signals which is taken advantage of for derivation of QKD. Note that the remained signals \(f=N-n\) are utilized to perform parameter estimation. \(\epsilon _{\mathrm{PE}}\) stands for the failure probability of parameter estimation and \(\chi _{\epsilon _{\mathrm{PE}}}(A:E)\) stands for the maximal value of the Holevo information in finite-size scenario. \(\varDelta (n)\) is related to the security of the privacy amplification, which is given by

$$\begin{aligned} \varDelta (n)=(2\mathrm{dim} H_{A}+3)\sqrt{\frac{\log _{2}(2/\bar{\epsilon })}{n}}+\frac{2}{n}\log _{2}(1/\epsilon _{\mathrm{PB}}), \end{aligned}$$
(16)

where \(\bar{\epsilon }\) and \(\epsilon _{\mathrm{PB}}\) stand for, respectively, the smoothing parameter and the failure probability of privacy amplification, and the Hilbert space dim \(H_{A}=2\).

To determine \(\chi _{\epsilon _{\mathrm{PE}}}(A:E)\), we need to construct the covariance matrix \(\varXi _{\epsilon _{\mathrm{PE}}}\) in parameter estimation procedure. Therefore, f couples of correlated variables \((x_{i},y_{i})_{i=1...f}\) are sampled and a normal model is taken advantage of for these correlated variables to link Alice and Bob’s data, which is given by

$$\begin{aligned} y=\tau x+z, \end{aligned}$$
(17)

where \(\tau =\sqrt{T}\) and z follows a centered normal distribution with variance \(\delta ^{2}=1+T\zeta \). Then, the covariance matrix \(\varXi _{\epsilon _{\mathrm{PE}}}\) is given by

$$\begin{aligned} \varXi _{\epsilon _{\mathrm{PE}}}=\left( \begin{array}{cc} \mathrm{WI}_{2} &{} \tau _{\mathrm{min}}H\sigma _{z} \\ \tau _{\mathrm{min}}H\sigma _{z}&{} (\tau ^{2}_{\mathrm{min}}U+\delta ^{2}_{\mathrm{max}})I_{2}\\ \end{array} \right) , \end{aligned}$$
(18)

where \(\tau _{\mathrm{min}}\) and \(\delta ^{2}_{\mathrm{max}}\) represent minimum of \(\tau \) and maximum of \(\delta ^{2}\), respectively. It is remarkable that the maximum-likelihood estimators \(\hat{\tau }\) and \(\hat{\delta }^{2}\), respectively, can be calculated by

$$\begin{aligned} \hat{\tau }=\frac{\sum ^{f}_{i=1}x_{i}y_{i}}{\sum ^{f}_{i=1}x^{2}_{i}} \quad and \quad \hat{\delta }^{2}=\frac{1}{f}\sum ^{f}_{i=1}(y_{i}-\hat{\tau }x_{i})^{2}. \end{aligned}$$
(19)

Besides, the following distributions

$$\begin{aligned} \hat{\tau }\sim N(\tau ,\frac{\delta ^{2}}{\sum ^{f}_{i=1}x^{2}_{i}}) \quad and \quad \frac{f\hat{\delta }^{2}}{\delta ^{2}}\sim \chi ^{2}(f-1) \end{aligned}$$
(20)

mean that the estimators \(\hat{\tau }\) and \(\hat{\delta }^{2}\) are independent for each other. Since parameters \(\tau \) and \(\delta ^{2}\) shown in Eq. (20) are true values, we can calculate \(\tau _{\mathrm{min}}\) (the lower bound of \(\tau \)) and \(\delta ^{2}_{\mathrm{max}}\) (the upper bound of \(\delta ^{2}\)), which is expressed as

$$\begin{aligned} \tau _{\mathrm{min}}\approx & {} \hat{\tau }-z_{\epsilon _{\mathrm{PE}}/2}\sqrt{\frac{\hat{\delta }^{2}}{fU}}, \nonumber \\ \delta ^{2}_{\mathrm{max}}\approx & {} \hat{\delta }^{2}+z_{\epsilon _{\mathrm{PE}}/2} \frac{\sqrt{2} \hat{\delta }^{2}}{\sqrt{f}}, \end{aligned}$$
(21)

where \(z_{\epsilon _{\mathrm{PE}}/2}\) is such that \(1-erf(z_{\epsilon _{\mathrm{PE}}/2}/\sqrt{2})/2=\epsilon _{\mathrm{PE}}/2\), and \(erf(x)=\frac{2}{\sqrt{\pi }}\int ^{x}_{0}e^{-t^{2}}dt\) is error function. Theoretically, the expected values of \(\hat{\tau }\) and \(\hat{\delta }^{2}\) read

$$\begin{aligned} E[\hat{\tau }]= & {} \sqrt{T}, \nonumber \\ E[\hat{\delta }^{2}]= & {} 1+T\zeta . \end{aligned}$$
(22)

Consequently, \(\tau _{\mathrm{min}}\) and \(\delta ^{2}_{\mathrm{max}}\) can be given by

$$\begin{aligned} \tau _{\mathrm{min}}\approx & {} \sqrt{T}-z_{\epsilon _{\mathrm{PE}}/2}\sqrt{\frac{1+T\zeta }{fU}}, \nonumber \\ \delta ^{2}_{\mathrm{max}}\approx & {} 1+T\zeta +z_{\epsilon _{\mathrm{PE}}/2} \frac{\sqrt{2}(1+T\zeta )}{\sqrt{f}}. \end{aligned}$$
(23)

It is worth mentioning that we can take the optimal value of the error probabilities as [9]

$$\begin{aligned} \bar{\epsilon }=\epsilon _{\mathrm{PE}}=\epsilon _{\mathrm{PB}}=10^{-10}. \end{aligned}$$
(24)

After that, the finite-size secret key rate can be calculated through utilizing the derived bounds \(\tau _{\mathrm{min}}\) and \(\delta ^{2}_{\mathrm{max}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, Y., Zhong, H. et al. Performance improvement of plug-and-play dual-phase-modulated continuous-variable quantum key distribution with quantum catalysis. Quantum Inf Process 19, 234 (2020). https://doi.org/10.1007/s11128-020-02730-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02730-5

Keywords

Navigation