Skip to main content
Log in

Clark’s Equation: A Useful Difference Equation for Population Models, Predictive Control, and Numerical Approximations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

A one-dimensional discrete-time dynamical system can be also seen as a recurrence, a difference equation, or an iteration scheme; and sometimes theoretical results come from different contexts. In this paper, I present a short survey about a particular family of one-dimensional maps that I have found in different situations. First, I introduce and explain the various motivations for the equation, and then I state some relevant results, with suitable references. Finally, I include some open problems and some words of caution about a series of recent poor-quality papers that, pretending to rediscover this equation, provide trivial results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashish, J. Cao.: A novel fixed point feedback approach studying the dynamical behaviors of standard logistic map, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 29, 1950010, 16 pp (2019)

  2. Ashish, J., Cao, R.: Chugh, Chaotic behavior of logistic map in superior orbit and an improved chaos-based traffic control model. Nonl. Dyn. 94, 959–975 (2018)

    Google Scholar 

  3. Bartha, F.A., Garab, Á.: Necessary and sufficient condition for the global stability of a delayed discrete-time neuron model. J. Comput. Dynam. 1, 213–232 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Beverton, R.J.H., Holt, S.J.: On the dynamics of exploited fish populations, Fisheries Investigations, Series 2, vol. 19. H. M. Stationery Office, London (1957)

    Google Scholar 

  5. Boccaletti, S., Grebogi, C., Lai, Y.-C., Mancini, H., Maza, D.: The control of chaos: theory and applications. Physics Reports 329, 103–197 (2000)

    MathSciNet  Google Scholar 

  6. Browder, F.E., Petryshyn, W.V.: Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 20, 197–228 (1967)

    MathSciNet  MATH  Google Scholar 

  7. Clark, C.W.: Mathematical bioeconomics: the optimal management of renewable resources. John Wiley & Sons, New York (1976)

    MATH  Google Scholar 

  8. Clark, C.W.: A delayed recruitment model of population dynamics with an application to baleen whale populations. J. Math. Biol. 3, 381–391 (1976)

    MathSciNet  MATH  Google Scholar 

  9. de Sousa Vieira, M., Lichtenberg, A.J.: Controlling chaos using nonlinear feedback with delay. Phys. Rev. E 54, 1200–1207 (1996)

    Google Scholar 

  10. El-Morshedy, H.A., Liz, E.: Globally attracting fixed points in higher order discrete population models. J. Math. Biol. 53, 365–384 (2006)

    MathSciNet  MATH  Google Scholar 

  11. El-Morshedy, H.A., Jiménez López, V., Liz, E.: Periodic points and stability in Clark’s delayed recruitment model. Nonlinear Anal.: Real World Appl 9, 776–790 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Eskola, H.T., Geritz, S.A.: On the mechanistic derivation of various discrete-time population models. Bull. Math. Biol. 69, 329–346 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Fisher, M.E.: Stability of a class of delay-difference equations. Nonlinear Anal. 8, 645–654 (1984)

    MathSciNet  MATH  Google Scholar 

  14. Garab, A., Jiménez López, V., Liz, E.: Global asymptotic stability of a generalization of the Pielou difference equation. Mediterr. J. Math. 16:93, 1–18 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Jiménez López, V., Parreño, E.: LAS and negative Schwarzian derivative do not imply GAS in Clark’s equation. J. Dynam. Differential Equations 28, 339–374 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Johnson, G.G.: Fixed points by mean value iterations. Proc. Am. Math. Soc. 34, 193–194 (1972)

    MathSciNet  MATH  Google Scholar 

  17. Krasnosel’skii, M.A.: Two remarks about the method of successive approximations. Uspekhi Mat. Nauk. 10, 123–127 (1955). (in Russian)

    MathSciNet  Google Scholar 

  18. Kumari, S., Chugh, R.: A new experiment with the convergence and stability of logistic map via SP orbit. Int. J. Appl. Eng. Res. 14, 797–801 (2019)

    Google Scholar 

  19. Lasota, A.: Ergodic problems in biology. Asterisque 50, 239–250 (1977)

    MathSciNet  Google Scholar 

  20. Liz, E., Franco, D.: Global stabilization of fixed points using predictive control, Chaos 20, 023124, 9 pp (2010)

  21. Liz, E.: Complex dynamics of survival and extinction in simple population models with harvesting. Theor. Ecol. 3, 209–221 (2010)

    Google Scholar 

  22. Liz, E.: A global picture of the gamma-Ricker map: a flexible discrete-time model with factors of positive and negative density dependence. Bull. Math. Biol. 80, 417–434 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Liz, E., Buedo-Fernández, S.: A new formula to get sharp global stability criteria for one-dimensional discrete-time models. Qual. Theory Dyn. Syst. 18, 813–824 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Liz, E., Lois Prados, C.: A note on the Lasota discrete model for blood cell production. Discrete Contin. Dyn. Syst. B 25, 701–713 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Liz, E., Pilarczyk, P.: Global dynamics in a stage-structured discrete-time population model with harvesting. J. Theor. Biol. 297, 148–165 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Liz, E., Ruiz-Herrera, A.: The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting. J. Math. Biol. 65, 997–1016 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Mallet-Paret, J., Nussbaum, R.D.: A differential-delay equation arising in optics and physiology. SIAM J. Math. Anal. 20, 249–292 (1989)

    MathSciNet  MATH  Google Scholar 

  28. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    MathSciNet  MATH  Google Scholar 

  29. May, R.M.: Mathematical models in whaling and fisheries management, in Some mathematical questions in biology (Proc. 14th Sympos., San Francisco, Calif., 1980), pp. 1–64. Lectures Math. Life Sci., 13, American Mathematics Society, Providence, R.I. (1980)

  30. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    MATH  Google Scholar 

  31. Milton, J.G., Bélair, J.: Chaos, noise, and extinction in models of population growth. Theor. Popul. Biol. 37, 273–290 (1990)

    MathSciNet  MATH  Google Scholar 

  32. Moran, P.A.P.: Some remarks on animal population dynamics. Biometrics 6, 250–258 (1950)

    Google Scholar 

  33. Nicholson, A.J.: The balance of animal populations. J. Anim. Ecol. 2, 132–178 (1933)

    Google Scholar 

  34. Phillips, G.M., Taylor, P.J.: Theory and applications of numerical analysis, 2nd edn. Elsevier, London (1996)

    Google Scholar 

  35. Polyak, B.T.: Chaos stabilization by predictive control. Autom. Remote Control 66, 1791–1804 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)

    Google Scholar 

  37. Quinn, T.J., Deriso, R.B.: Quantitative Fish Dynamics. Oxford University Press, New York (1999)

    Google Scholar 

  38. Rani, M., Agarwal, R.: A new experimental approach to study the stability of logistic map. Chaos Solit. Fract. 4, 2062–2066 (2009)

    Google Scholar 

  39. Ricker, W.E.: Stock and recruitment. J. Fish. Res. Bd. Can. 11, 559–623 (1954)

    Google Scholar 

  40. Sander, E., Yorke, J.A.: Period-doubling cascades galore Ergod. Theor. Dyn. Syst. 31, 1249–1267 (2011)

    MATH  Google Scholar 

  41. Schaefer, H.: On the method of successive approximations. J. Deutsch. Math. Verein. 59, 131–140 (1957). (in German)

    Google Scholar 

  42. Thieme, H.R.: Mathematics in Population Biology. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  43. Thunberg, H.: Periodicity versus chaos in one-dimensional dynamics. SIAM Rev. 43, 3–30 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Ushio, T., Yamamoto, S.: Prediction-based control of chaos. Phys. Lett. A 264, 30–35 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of the research grant MTM2017–85054–C2–1–P (AEI/FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Liz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liz, E. Clark’s Equation: A Useful Difference Equation for Population Models, Predictive Control, and Numerical Approximations. Qual. Theory Dyn. Syst. 19, 71 (2020). https://doi.org/10.1007/s12346-020-00405-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00405-1

Keywords

Mathematics Subject Classification

Navigation