Skip to main content

Advertisement

Log in

Influence of the dispersion coefficient and dielectric constant ratio on the asymmetric Gaussian potential quantum dot qubit with electromagnetic field

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Selecting the asymmetric Gaussian (AG) potential to describe the confinement of electron in a disk-shaped quantum dot (QD), the ground state and the first excited state energy and wave function of the system are derived by using the Lee\(\hbox {--}\)Low\(\hbox {--}\)Pines (LLP) Pekar transformation variational method, and the two-level structure required for a qubit is constructed. The influence of material parameters such as the dispersion coefficient, dielectric constant ratio and electron\(\hbox {--}\)phonon coupling constant on the qubit properties of AG potential QD with the electromagnetic field are investigated. The results show that the electric field and magnetic field have opposite adjustment functions for the formation of qubit. The electric field is advantageous for the qubit survival and information storage, while magnetic field and electron\(\hbox {--}\)phonon coupling are detrimental to the qubit survival and information storage, respectively. The decoherence time of the qubit increases with increasing magnetic field cyclotron frequency ‘from the turning point’. Applying an electric field, increasing the dielectric constant ratio, the dispersion coefficient and the electron\(\hbox {--}\)phonon coupling constant of the materials are all beneficial to improve the coherence of the qubit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M Tiotsop et al, Iran. J. Sci. Technol. Trans. Sci. 42, 933 (2018)

    Article  Google Scholar 

  2. Z H Lang, C U Cai and J L Xiao, Int. J. Theor. Phys. 58, 2320 (2019)

    Article  Google Scholar 

  3. D Misra and S K Tripathy, Pramana – J. Phys. 86, 661 (2016)

    Article  ADS  Google Scholar 

  4. M Ávila and J Rueda-Paz, Pramana – J. Phys. 86, 777 (2016)

    Article  ADS  Google Scholar 

  5. Z H Liang and J L Xiao, Indian J. Phys. 92, 437 (2018)

    Article  ADS  Google Scholar 

  6. S S Li et al, J. Appl. Phys. 90, 6151 (2001)

    Article  ADS  Google Scholar 

  7. J R Petta et al, Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  8. S Varwig et al, Phys. Rev. B 87, 115307 (2013)

    Article  ADS  Google Scholar 

  9. Y Sun and J L Xiao, Opt. Quant. Electron. 51, 110 (2019)

    Article  Google Scholar 

  10. J L Xiao, J. Low Temp. Phys. 195, 442 (2019)

    Article  ADS  Google Scholar 

  11. X Ma and J L Xiao, Opt. Quant. Electron. 5, 144 (2018)

    Article  Google Scholar 

  12. J L Xiao, J. Low Temp. Phys. 192, 41 (2018)

    Article  ADS  Google Scholar 

  13. F M Peeters and V A Schweigert, Phys. Rev. B 53, 1468 (1996)

    Article  ADS  Google Scholar 

  14. W F Xie, Commun. Theor. Phys. 42, 151 (2004)

    Article  ADS  Google Scholar 

  15. J Adamowski et al, Phys. Rev. B 62, 4234 (2000)

    Article  ADS  Google Scholar 

  16. J Gu and J J Liang, Acta Phys. Sin. 54, 5335 (2005) (in Chinese)

    Google Scholar 

  17. T D Lee, F M Low and D Pines, Phys. Rev. 90, 297 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  18. S I Pekar, Untersuchungen über die Elektronen-theorie der Kristalle (Akademie Verlag, Berlin, 1954)

  19. A J Fotue et al, Eur. Phys. J. Plus 131, 75 (2016)

    Article  Google Scholar 

  20. X F Bai et al, J. Korean Phys. Soc. 70, 956 (2017)

    Article  ADS  Google Scholar 

  21. Wuyunqimuge et al, J. Low Temp. Phys. 193, 48 (2018)

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grand No. 51902085 and the Natural Science Foundation of Inner Mongolia Autonomous Region, China under Grant No. 2019MS01011 and Grant No. 2019MS06017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wuyunqimuge, Xin, W., Liu, XX. et al. Influence of the dispersion coefficient and dielectric constant ratio on the asymmetric Gaussian potential quantum dot qubit with electromagnetic field. Pramana - J Phys 94, 98 (2020). https://doi.org/10.1007/s12043-020-01963-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-01963-4

Keywords

PACS Nos

Navigation