Skip to main content
Log in

High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate anode materials impedes further applications. Herein, a novel self-template strategy is designed to synthesize uniform flowerlike N-doped hierarchical porous carbon networks (NHPCN) with high content of N (15.31 at.%) assembled by ultrathin nanosheets via a self-synthesized single precursor and subsequent thermal annealing. Relying on the synergetic coordination of benzimidazole and 2-methylimidazole with metal ions to produce a flowerlike network, a self-formed single precursor can be harvested. Due to the structural and compositional advantages, including the high N doping, the expanded interlayer spacing, the ultrathin two-dimensional nano-sized subunits, and the three-dimensional porous network structure, these unique NHPCN flowers deliver ultrahigh reversible capacities of 453.7 mAh·g−1 at 0.1 A·g−1 and 242.5 mAh·g−1 at 1 A·g−1 for 2,500 cycles with exceptional rate capability of 5 A·g−1 with reversible capacities of 201.2 mAh·g−1. The greatly improved sodium storage performance of NHPCN confirms the importance of reasonable engineering and synthesis of hierarchical carbon with unique structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, A. H.; Yu, S. H.; Park, J. H.; Kang, S. M.; Kim, M. J.; Jeon, T. Y.; Mun, J.; Sung, Y. E. Iron sulfides with dopamine-derived carbon coating as superior performance anodes for sodium-ion batteries. Nano Res.2019, 12, 2609–2613.

    CAS  Google Scholar 

  2. Huang, M.; Mi, K.; Zhang, J. H.; Liu, H. L.; Yu, T. T.; Kong, Q. H.; Xiong, S. L. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J. Mater. Chem. A2017, 5, 266–274.

    CAS  Google Scholar 

  3. Zhou, Y. L.; Yan, D.; Xu, H. Y.; Feng, J. K.; Jiang, X. L.; Yue, J.; Yang, J.; Qian, Y. T. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy2015, 12, 528–537.

    CAS  Google Scholar 

  4. Zhou, Y. L.; Tian, J.; Xu, H. Y.; Yang, J.; Qian, Y. T. VS4 nanoparticles rooted by a-C coated MWCNTs as an advanced anode material in lithium ion batteries. Energy Stor. Mater., 2017, 6, 149–156.

    Google Scholar 

  5. Xia, Z.; Sun, H.; He, X.; Sun, Z. T.; Lu, C.; Li, J.; Peng, Y.; Dou, S. X.; Sun, J. Y.; Liu, Z. F. In situ construction of CoSe2@vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy2019, 60, 385–393.

    CAS  Google Scholar 

  6. Lu, C.; Li, Z. Z.; Yu, L. H.; Zhang, L.; Xia, Z.; Jiang, T.; Yin, W. J.; Dou, S. X.; Liu, Z. F.; Sun, J. Y. Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Res.2018, 11, 4614–4626.

    CAS  Google Scholar 

  7. Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano. Res.2017, 10, 2156–2167.

    CAS  Google Scholar 

  8. Liu, T. F.; Zhang, Y. P.; Jiang, Z. G.; Zeng, X. Q.; Ji, J. P.; Li, Z. H.; Gao, X. H.; Sun, M. H.; Lin, Z.; Ling, M. et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci.2019, 12, 1512–1533.

    CAS  Google Scholar 

  9. Xue, Y. L.; Li, X. Y.; Wang, J. G.; Yu, Q.; Qian, X.; Chen, L. Z.; Dan, Y. Y. Fe-doped CoP flower-like microstructure on carbon membrane as integrated electrode with enhanced sodium ion storage. Chem.—Eur. J.2020, 26, 1298–1305.

    Google Scholar 

  10. Ai, H. Q.; Liu, X. B.; Yang, B.; Zhang, X. M.; Zhao, M. W. Two-dimensional metal-organic half-metallic antiferromagnet: CoFePz. J. Phys. Chem. C2018, 122, 1846–1851.

    CAS  Google Scholar 

  11. Shen, K.; Chen, X. D.; Chen, J. Y.; Li, Y. W. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal.2016, 6, 5887–5903.

    CAS  Google Scholar 

  12. Tang, H. L.; Cai, S. C.; Xie, S. L.; Wang, Z. B.; Tong, Y. X.; Pan, M.; Lu, X. H. Metal-organic-framework-derived dual metal- and nitrogen-doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells. Adv. Sci.2016, 3, 1500265.

    Google Scholar 

  13. Cao, X. H.; Tan, C. L.; Sindoro, M.; Zhang, H. Hybrid micro-/nanostructures derived from metal-organic frameworks: Preparation and applications in energy storage and conversion. Chem. Soc. Rev.2017, 46, 2660–2677.

    CAS  Google Scholar 

  14. Kaneti, Y. V; Tang, J.; Salunkhe, R. R.; Jiang, X. C.; Yu, A. B.; Wu, K. C. W.; Yamauchi, Y. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater.2017, 29, 1604898.

    Google Scholar 

  15. He, Y. Z.; Han, X. J.; Du, Y. C.; Song, B.; Zhang, B.; Zhang, W.; Xu, P. Conjugated polymer-mediated synthesis of sulfur- and nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. Nano Res.2018, 11, 2573–2585.

    CAS  Google Scholar 

  16. Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater.2015, 27, 2400–2405.

    CAS  Google Scholar 

  17. Zhou, Y. L.; Zhang, M.; Wang, Q.; Yang, J.; Luo, X. Y.; Li, Y. L.; Du, R.; Yan, X. S.; Sun, X. Q.; Dong, C. F. et al. Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Res.2020, 13, 691–700.

    CAS  Google Scholar 

  18. Zhao, X. J.; Luo, D.; Wang, Y.; Liu, Z. H. Reduced graphene oxide-supported CoP nanocrystals confined in porous nitrogen-doped carbon nanowire for highly enhanced lithium/sodium storage and hydrogen evolution reaction. Nano Res.2019, 12, 2872–2880.

    CAS  Google Scholar 

  19. Zhang, J. H.; Huang, M.; Xi, B. J.; Mi, K.; Yuan, A. H.; Xiong, S. L. Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Adv. Energy Mater.2018, 8, 1701330.

    Google Scholar 

  20. Kong, L. J.; Zhu, J.; Shuang, W.; Bu, X. H. Nitrogen-doped wrinkled carbon foils derived from MOF nanosheets for superior sodium storage. Adv. Energy Mater.2018, 8, 1801515.

    Google Scholar 

  21. Lu, C.; Li, Z. Z.; Xia, Z., Ci, H. N.; Cai, J. S.; Song, Y. Z.; Yu, L. H.; Yin, W. J.; Dou, S. X.; Sun, J. Y.; Liu, Z. F. Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Res.2019, 12, 3051–3058.

    CAS  Google Scholar 

  22. Zhang, D. W.; Wang, G.; Xu, L.; Lian, J. B.; Bao, J.; Zhao, Y.; Qiu, J. X.; Li, H. M. Defect-rich N-doped porous carbon derived from soybean for high rate lithium-ion batteries. Appl. Surf. Sci.2018, 451, 298–305.

    CAS  Google Scholar 

  23. Gao, L. B.; Zhang, H. T.; Surjadi, J. U.; Li, P. F.; Han, Y.; Sun, D.; Lu, Y. Mechanically stable ternary heterogeneous electrodes for energy storage and conversion. Nanoscale2018, 10, 2613–2622.

    CAS  Google Scholar 

  24. Maximoff, S. N.; Smit, B. Redox chemistry and metal-insulator transitions intertwined in a Nano-porous material. Nat. Commun.2014, 5, 4032.

    CAS  Google Scholar 

  25. Han, S.; Kim, H.; Kim, J.; Jung, Y. Modulating the magnetic behavior of Fe(n)-MOF-74 by the high electron affinity of the guest molecule. Phys. Chem. Chem. Phys.2015, 17, 16977–16982.

    CAS  Google Scholar 

  26. Thonhauser, T.; Zuluaga, S.; Arter, C. A.; Berland, K.; Schröder, E.; Hyldgaard, P. Spin signature of nonlocal correlation binding in metal-organic frameworks. Phys. Rev. Lett.2015, 115, 136402.

    CAS  Google Scholar 

  27. Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater.2015, 27, 5010–5016.

    CAS  Google Scholar 

  28. Gadipelli, S.; Guo, Z. X. Tuning of ZIF-derived carbon with high activity, nitrogen functionality, and yield—A case for superior CO2 capture. ChemSusChem2015, 8, 2123–2132.

    CAS  Google Scholar 

  29. Guo, C. Y.; Zhang, Y. H.; Guo, Y.; Zhang, L. G.; Wang, J. D. A general and efficient approach for tuning the crystal morphology of classical MOFs. Chem. Commun.2018, 54, 252–255.

    CAS  Google Scholar 

  30. Li, X. Z.; Fang, Y. Y.; Lin, X. Q.; Tian, M.; An, X. C.; Fu, Y.; Li, R.; Jin, J.; Ma, J. T. MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: Extraordinary bi-functional electrocatalysts for OER and ORR. J. Mater. Chem. A2015, 3, 17392–17402.

    CAS  Google Scholar 

  31. Kang, B. K.; Im, S. Y.; Lee, J.; Kwag, S. H.; Kwon, S. B.; Tiruneh, S.; Kim, M. J.; Kim, J. H.; Yang, W. S.; Lim, B. et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res.2019, 12, 1605–1611.

    CAS  Google Scholar 

  32. MacFarlane, D. R.; Forsyth, M.; Howlett, P. C.; Kar, M.; Passerini, S.; Pringle, J. M.; Ohno, H.; Watanabe, M.; Yan, F.; Zheng, W. J. et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater.2016, 1, 15005.

    CAS  Google Scholar 

  33. Zhao, K. M.; Liu, S. Q.; Ye, G. Y.; Gan, Q. M.; Zhou, Z.; He, Z. High-yield bottom-up synthesis of 2D metal-organic frameworks and their derived ultrathin carbon nanosheets for energy storage. J. Mater. Chem. A2018, 6, 2166–2175.

    CAS  Google Scholar 

  34. Guo, X. M.; Qian, C.; Wan, X. H.; Zhang, W.; Zhu, H. W.; Zhang, J. H.; Yang, H. X.; Lin, S. L.; Kong, Q. H.; Fan, T. X. Facile in situ fabrication of biomorphic Co2P-Co3O4/rGO/C as an efficient electrocatalyst for the oxygen reduction reaction. Nanoscale2020, 12, 4374–4382.

    CAS  Google Scholar 

  35. Zhang, D.; Guo, X. M.; Tong, X. Z.; Chen, Y. F.; Duan, M. T.; Shi, J.; Jiang, C. W.; Hu, L. L.; Kong, Q. H.; Zhang, J. H. High-performance battery-type supercapacitor based on porous biocarbon and biocarbon supported Ni-Co layered double hydroxide. J. Alloys Compd.2020, 837, 155529.

    CAS  Google Scholar 

  36. Zhang, J. H.; Kong, Q. H.; Wang, D. Y. Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation. J. Mater. Chem. A2018, 6, 6376–6386.

    CAS  Google Scholar 

  37. Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater.2018, 30, 1700104.

    Google Scholar 

  38. Guo, X. M.; Qian, C.; Shi, R. H.; Zhang, W.; Xu, F.; Qian, S. L; Zhang, J. H.; Yang, H. X.; Yuan, A. H.; Fan, T. X. Biomorphic Co-N-C/CoOx composite derived from natural chloroplasts as efficient electrocatalyst for oxygen reduction reaction. Small2019, 15, 1804855.

    Google Scholar 

  39. Xue, Y. C.; Yu, T. T.; Chen, J. L.; Wan, X. H.; Cai, X. W.; Guo, X. M.; Zhang, F.; Xiong, W. W.; Liu, Y. J.; Kong, Q. H. et al. Fabrication of GeO2 microspheres/hierarchical porous N-doped carbon with superior cyclic stability for Li-ion batteries. J. Solid State Chem.2020, 286, 121303.

    CAS  Google Scholar 

  40. Xu, D. M.; Chao, D. L.; Wang, H. W.; Gong, Y. S.; Wang, R.; He, B. B.; Hu, X. L.; Fan, H. J. Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor. Adv. Energy Mater.2018, 8, 1702769.

    Google Scholar 

  41. Xie, D.; Zhang, J. S.; Pan, G. X.; Li, H. G.; Xie, S. L.; Wang, S. S.; Fan, H. B.; Cheng, F. L.; Xia, X. H. Functionalized N-doped carbon nanotube arrays: Novel binder-free anodes for sodium-ion batteries. ACSAppl. Mater. Interfaces2019, 11, 18662–18670.

    CAS  Google Scholar 

  42. Hao, R.; Yang, Y.; Wang, H.; Jia, B. B.; Ma, G. S.; Yu, D. D.; Guo, L.; Yang, S. H. Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy2018, 45, 220–228.

    CAS  Google Scholar 

  43. Luo, D. H.; Han, P.; Shi, L. D.; Huang, J. T.; Yu, J. L.; Lin, Y. M.; Du, J. G.; Yang, B.; Li, C. H.; Zhu, C. Z. et al. Biomass-derived nitrogen/oxygen co-doped hierarchical porous carbon with a large specific surface area for ultrafast and long-life sodium-ion batteries. Appl. Surf. Sci.2018, 462, 713–719.

    CAS  Google Scholar 

  44. Bai, J.; Xi, B. J.; Mao, H. Z.; Lin, Y.; Ma, X. J.; Feng, J. K.; Xiong, S. L. One-step construction of N,P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv. Mater.2018, 30, 1802310.

    Google Scholar 

  45. Haffner, A.; Hatz, A. K.; Moudrakovski, I.; Lotsch, B. V.; Johrendt, D. Fast Sodium-ion conductivity in supertetrahedral phosphidosilicates. Angew. Chem., Int. Ed.2018, 57, 6155–6160.

    CAS  Google Scholar 

  46. Sun, J. F.; Guo, L. Z.; Sun, X.; Zhang, J. Y.; Hou, L. R.; Li, L.; Yang, S. H.; Yuan, C. Z. One-dimensional nanostructured pseudocapacitive materials: Design, synthesis and applications in supercapacitors. Batter. Supere.2019, 2, 820–841.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science of Foundation of China (No. 51672114), the Natural Science Foundation of Jiangsu Province (No. BK20181469), and the Zhenjiang Key Research and Development Project (Social Development) (No. SSH20190140049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junhao Zhang or Aihua Yuan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, D., Huang, M., Zhang, J. et al. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 13, 2862–2868 (2020). https://doi.org/10.1007/s12274-020-2944-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2944-0

Keywords

Navigation