Skip to main content
Log in

Nonenzymatic amperometric sensor for hydrogen peroxide released from living cancer cells based on hierarchical NiCo2O4-CoNiO2 hybrids embedded in partially reduced graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The synthesis of hierarchical NiCo2O4-CoNiO2 hybrids embedded in partially reduced graphene oxide (represented by NiCo2O4/CoNiO2@pPRGO) is described. They were derived from ultrathin CoNi-based zeolitic imidazolate framework (CoNi-ZIF) nanosheets vertically grew on three-dimensional (3D) pRGO networks by pyrolysis at different temperatures (300, 600, and 900 °C) in N2 atmosphere. Transmission electron microscopy, X-ray diffraction, and X-ray photoemission spectroscopy measurements showed that the metal coordination centers (Co or Ni) were transferred into NiCo2O4 spinel and CoNiO2 nanostructures, along with a small number of metallic states of Co and Ni. In view of good electrochemical conductivity and large specific surface area of pRGO, good catalytic activity of Co- and Ni-contained NPs, and homogeneous distribution of NPs within the pRGO network, the NiCo2O4/CoNiO2@pRGO600 nanohybrid calcined at 600 °C displayed superior electrocatalytic activity toward hydrogen peroxide (H2O2) reduction. A glassy carbon electrode modified with NiCo2O4/CoNiO2@pRGO600 was used for determination of H2O2 by amperometry at an applied potential of − 0.4 V vs. Ag/AgCl. The nonenzymatic amperometric sensor exhibited high sensitivity and low detection limit (0.41 μM) within a wide working range (5 μM–3 mM and 3–12 mM) toward H2O2, as well as good selectivity, reproducibility, and long-term stability. Benefiting from the good biocompatibility and remarkable analytical performances of NiCo2O4/CoNiO2@pRGO600, the assay was used to determine real-time H2O2 released from living cancer cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nosaka Y, Nosaka AY (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117:11302–11336

    Article  CAS  Google Scholar 

  2. Li M, Gao H, Wang X, Wang Y, Qi H, Zhang C (2017) A fluorine-doped tin oxide electrode modified with gold nanoparticles for electrochemiluminescent determination of hydrogen peroxide released by living cells. Microchim Acta 184:603–610

    Article  CAS  Google Scholar 

  3. Sun L, Ding Y, Jiang Y, Liu Q (2017) Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sensor Actuat B-Chem 239:848–856

    Article  CAS  Google Scholar 

  4. Wei Z, Hai Z, Akbari MK, Zhao Z, Sun Y, Hyde L, Verpoort F, Hu J, Zhuiykov S (2019) Surface functionalization of wafer-scale two-dimensional WO3 nanofilms by NM electrodeposition (NM = Ag, Pt, Pd) for electrochemical H2O2 reduction improvement. Electrochim Acta 297:417–426

    Article  CAS  Google Scholar 

  5. Khan F, Akhtar N, Jalal N, Hussain I, Szmigielski R, Hayat MQ, Ahmad HB, El-Said WA, Yang M, Janjua HA (2019) Carbon-dot wrapped ZnO nanoparticle-based photoelectrochemical sensor for selective monitoring of H2O2 released from cancer cells. Microchim Acta 186:127

    Article  Google Scholar 

  6. Jin J, Wu W, Min H, Wu H, Wang S, Ding Y, Yang S (2017) A glassy carbon electrode modified with FeS nanosheets as a highly sensitive amperometric sensor for hydrogen peroxide. Microchim Acta 184:1389–1396

    Article  CAS  Google Scholar 

  7. Xiong X, You C, Cao X, Pang L, Kong R, Sun X (2017) Ni2P nanosheets array as a novel electrochemical catalyst electrode for non-enzymatic H2O2 sensing. Electrochim Acta 253:517–521

    Article  CAS  Google Scholar 

  8. Chen S, Chen Z, Siahrostami S, Kim TR, Nordlund D, Sokaras D, Nowak S, To JWF, Higgins D, Sinclair R, Nørskov JK, Jaramillo TF, Bao Z (2018) Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustain Chem Eng 6:311–317

    Article  CAS  Google Scholar 

  9. Liu H, Weng L, Yang C (2017) A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells. Microchim Acta 184:1267–1283

    Article  CAS  Google Scholar 

  10. Zhang Y, Wang C, Gong F, Wang P, Guharoy U, Yang C, Zhang H, Fang S, Liu J (2020) Ultrathin agaric-like ZnO with Pd dopant for aniline sensor and DFT investigation. J Hazard Mater 388:122069

    Article  CAS  Google Scholar 

  11. Li S, Liu X, Chai H, Huang Y (2018) Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. TrAC Trend Anal Chem 105:391–403

    Article  CAS  Google Scholar 

  12. Yang H, Yang R, Zhang P, Qin Y, Chen T, Ye F (2017) A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim Acta 184:4629–4635

    Article  CAS  Google Scholar 

  13. Zhu B, Xia D, Zou R (2018) Metal-organic frameworks and their derivatives as bifunctional electrocatalysts. Coordin Chem Rev 376:430–448

    Article  CAS  Google Scholar 

  14. Wang M, Hu M, Hu B, Guo C, Song Y, Jia Q, He L, Zhang Z, Fang S (2019) Bimetallic cerium and ferric oxides nanoparticles embedded within mesoporous carbon matrix: electrochemical immunosensor for sensitive detection of carbohydrate antigen 19-9. Biosens Bioelectron 135:22–29

    Article  CAS  Google Scholar 

  15. Shu Y, Yan Y, Chen J, Xu Q, Pang H, Hu X (2017) Ni and NiO nanoparticles decorated metal-organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum. ACS Appl Mater Inter 9:22342–22349

    Article  CAS  Google Scholar 

  16. Gu C, Guo C, Li Z, Wang M, Zhou N, He L, Zhang Z, Du M (2019) Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells. Biosens Bioelectron 134:8–15

    Article  CAS  Google Scholar 

  17. Dang S, Zhu Q, Xu Q (2017) Nanomaterials derived from metal-organic frameworks. Nat Rev Mater 3:17075

    Article  Google Scholar 

  18. Dai H, Chen Y, Niu X, Pan C, Chen H, Chen X (2018) High-performance electrochemical biosensor for nonenzymatic H2O2 sensing based on Au@C-Co3O4 heterostructures. Biosens Bioelectron 118:36–43

    Article  CAS  Google Scholar 

  19. Wu Y, Zhu J, Huang L (2019) A review of three-dimensional graphene-based materials: synthesis and applications to energy conversion/storage and environment. Carbon 143:610–640

    Article  CAS  Google Scholar 

  20. Xi J, Zhang Y, Wang Q, Xiao J, Chi K, Duan X, Chen J, Tang C, Sun Y, Xiao F, Wang S (2018) Multi-element doping design of high-efficient carbocatalyst for electrochemical sensing of cancer cells. Sensor Actuat B-Chem 273:108–117

    Article  CAS  Google Scholar 

  21. Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, Jiang X, Yao L, Chen J, Chen H (2011) Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32:8010–8020

    Article  CAS  Google Scholar 

  22. Guler M, Turkoglu V, Bulut A, Zahmakiran M (2018) Electrochemical sensing of hydrogen peroxide using Pd@Ag bimetallic nanoparticles decorated functionalized reduced graphene oxide. Electrochim Acta 263:118–126

    Article  CAS  Google Scholar 

  23. Dau TNN, Vu VH, Cao TT, Nguyen VC, Ly CT, Tran DL, Pham TTN, Loc NT, Piro B, Vu TT (2019) In-situ electrochemically deposited Fe3O4 nanoparticles onto graphene nanosheets as amperometric amplifier for electrochemical biosensing applications. Sensor Actuat B-Chem 283:52–60

    Article  CAS  Google Scholar 

  24. Cheng Z, Shen Q, Yu H, Han D, Zhong F, Yang Y (2017) Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with the layered MoS2-reduced graphene oxide and Prussian blue. Microchim Acta 184:4587–4595

    Article  CAS  Google Scholar 

  25. Zhou Y, Li C, Hao Y, Ye B, Xu M (2018) Oriented growth of cross-linked metal-organic framework film on graphene surface for non-enzymatic electrochemical sensor of hydrogen peroxide in disinfectant. Talanta 188:282–287

    Article  CAS  Google Scholar 

  26. Li C, Wu R, Zou J, Zhang T, Zhang S, Zhang Z, Hu X, Yan Y, Ling X (2018) MNPs@anionic MOFs/ERGO with the size selectivity for the electrochemical determination of H2O2 released from living cells. Biosens Bioelectron 116:81–88

    Article  CAS  Google Scholar 

  27. Liu X, Liu W, Ko M, Park M, Kim MG, Oh P, Chae S, Park S, Casimir A, Wu G, Cho J (2015) Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv Funct Mater 25:5799–5808

    Article  CAS  Google Scholar 

  28. Wang M, Hu M, Liu J, Guo C, Peng D, Jia Q, He L, Zhang Z, Du M (2019) Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosens Bioelectron 132:8–16

    Article  CAS  Google Scholar 

  29. Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano 2:1825–1832

    Article  CAS  Google Scholar 

  30. Liu Y, Hu B, Wu S, Wang M, Du M (2019) Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS2 sheets for non-Pt methanol oxidation and water splitting. Appl Catal B-Environ 258:117970

    Article  CAS  Google Scholar 

  31. Ma B, Kong C, Hu X, Liu K, Huang Q, Lv J, Lu W, Zhang X, Yang Z, Yang S (2018) A sensitive electrochemical nonenzymatic biosensor for the detection of H2O2 released from living cells based on ultrathin concave Ag nanosheets. Biosens Bioelectron 106:29–36

    Article  CAS  Google Scholar 

  32. Lu X, Liu X, Shen T, Qin Y, Zhang P, Luo H, Guo Z (2017) Convenient fabrication of graphene/gold nanoparticle aerogel as direct electrode for H2O2 sensing. Mater Lett 207:49–52

    Article  CAS  Google Scholar 

  33. Xue B, Li K, Gu S, Zhang L, Lu J (2018) Ni foam-supported ZnO nanowires and Co3O4/NiCo2O4 double-shelled nanocages for efficient hydrogen peroxide detection. Sensor Actuat B-Chem 262:828–836

    Article  CAS  Google Scholar 

  34. Zhang Y, Bai X, Wang X, Shiu K, Zhu Y, Jiang H (2014) Highly sensitive graphene-Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal Chem 86:9459–9465

    Article  CAS  Google Scholar 

  35. Kong L, Ren Z, Zheng N, Du S, Wu J, Tang J, Fu H (2015) Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res 8:469–480

    Article  CAS  Google Scholar 

  36. Sherino B, Mohamad S, Abdul Halim SN, Abdul Manan NS (2018) Electrochemical detection of hydrogen peroxide on a new microporous Ni-metal organic framework material-carbon paste electrode. Sensor Actuat B-Chem 254:1148–1156

    Article  CAS  Google Scholar 

  37. Li B, Song H, Deng Z, Huo L, Gao S (2019) Novel sensitive amperometric hydrogen peroxide sensor using layered hierarchical porous α-MoO3 and GO modified glass carbon electrode. Sensor Actuat B-Chem 288:641–648

    Article  CAS  Google Scholar 

  38. Xin Y, Fu-bing X, Hong-wei L, Feng W, Di-zhao C, Zhao-yang W (2013) A novel H2O2 biosensor based on Fe3O4-au magnetic nanoparticles coated horseradish peroxidase and graphene sheets-Nafion film modified screen-printed carbon electrode. Electrochim Acta 109:750–755

    Article  CAS  Google Scholar 

  39. Ding R, Qi L, Jia M, Wang H (2013) Simple hydrothermal synthesis of mesoporous spinel NiCo2O4 nanoparticles and their catalytic behavior in CH3OH electro-oxidation and H2O2 electro-reduction. Catal Sci Technol 3:3207–3215

    Article  CAS  Google Scholar 

  40. Zhang T, Gu Y, Li C, Yan X, Lu N, Liu H, Zhang Z, Zhang H (2017) Fabrication of novel electrochemical biosensor based on graphene nanohybrid to detect H2O2 released from living cells with ultrahigh performance. ACS Appl Mater Inter 9:37991–37999

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. U1604127), the Scientific and Technological Project of Henan Province (Nos. 192102310261 and 192102310460), the Key Research Project of University of Henan Province (No. 19zx004), the Scientific Research Fund of Doctor in Zhengzhou University of Light Industry (No. 2018BSJJ028), and the Young Backbone Teacher Training Program in Universities of Henan Province (No. 2018GGJS089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihong Zhang or Miao Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 6147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wang, C., Liu, Y. et al. Nonenzymatic amperometric sensor for hydrogen peroxide released from living cancer cells based on hierarchical NiCo2O4-CoNiO2 hybrids embedded in partially reduced graphene oxide. Microchim Acta 187, 436 (2020). https://doi.org/10.1007/s00604-020-04419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04419-z

Keywords

Navigation