Skip to main content
Log in

Label-free chlorine and nitrogen-doped fluorescent carbon dots for target imaging of lysosomes in living cells

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Lysosomes with a single-layered membrane structure are mainly involved in the scavenging of foreign substances and play an important role in maintaining normal physiological functions of living cells. In this work, near-neutrally charged fluorescent carbon dots (CDs) were prepared with lipophilicity through a facile one-pot hydrothermal carbonization of chloranil and triethylenetetramine at 160 °C for 3 h. The as-obtained CDs are proved to have good photostability, low cost, and excellent biocompatibility. Importantly, the as-prepared CDs with high quantum yield of 30.8% show excitation-dependent emission with great stability, and thus, they can be well used for the long-term target imaging of lysosomes in living cells without further modification. Meanwhile, the CDs can quickly enter into the lysosomes within 30 min, and the green fluorescence (FL) of CDs reaches the plateau when incubated for 60 min. By comparing the fluorescent intensity, the information about distribution and amount of lysosomes in different cells can be obtained. The proposed CD-based strategy demonstrates great promise for label-free target imaging of lysosomes in living cells.

The near-neutral carbon dots (CDs) with lipophilicity are used as label-free fluorescent nanoprobes for the long-term imaging of lysosomes in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8(8):622–632

    Article  CAS  Google Scholar 

  2. Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10(9):623–635

    Article  CAS  Google Scholar 

  3. Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F, Hailey DW, Oorschot V, Klumperman J, Baehrecke EH, Lenardo MJ (2010) Autophagy termination and lysosome reformation regulated by mTOR. Nature 465(7300):942–946

    Article  CAS  Google Scholar 

  4. Wang CS, Zhao T, Li Y, Huang G, White MA, Gao J (2017) Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes. Adv Drug Delivery Rev 113:87–96

    Article  CAS  Google Scholar 

  5. Appelqvist H, Wäster P, Kågedal K, Öllinger K (2013) The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 5(4):214–226

    Article  CAS  Google Scholar 

  6. Platt FM, Barry B, Spoel AC, Der V (2012) Lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol 199(5):723–734

    Article  CAS  Google Scholar 

  7. Fukuda T, Ewan L, Bauer M, Mattaliano RJ, Zaal K, Ralston E, Plotz PH, Raben N (2006) Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease. Ann Neurol 59(4):700–708

    Article  CAS  Google Scholar 

  8. Wu S, Li Z, Han J, Han S (2011) Dual colored mesoporous silica nanoparticles with pH activable rhodamine-lactam for ratiometric sensing of lysosomal acidity. Chem Commun 47(40):11276–11278

    Article  CAS  Google Scholar 

  9. Cai Y, Gui C, Samedov K, Su H, Gu X, Li S, Luo W, Sung HHY, Lam JWY, Kwok RTK, Williams ID, Qin A, Tang BZ (2017) An acidic pH independent piperazine-TPE AIEgen as a unique bioprobe for lysosome tracing. Chem Sci 8(11):7593–7603

    Article  CAS  Google Scholar 

  10. Guo S, Sun Y, Geng X, Yang R, Xiao L, Qu L, Li Z (2020) Intrinsic lysosomal targeting fluorescent carbon dots with ultrastability for long-term lysosome imaging. J Mater Chem B 8(4):736–742

    Article  CAS  Google Scholar 

  11. Chen BB, Liu ML, Li CM, Huang CZ (2019) Fluorescent carbon dots functionalization. Adv Colloid Interf Sci 270:165–190

    Article  CAS  Google Scholar 

  12. Liu ML, Chen BB, Li CM, Huang CZ (2019) Carbon dots prepared for fluorescence and chemiluminescence sensing. Sci China Chem 62:968–981

    Article  CAS  Google Scholar 

  13. Liu ML, Chen BB, He JH, Li CM, Li YF, Huang CZ (2019) Anthrax biomarker: an ultrasensitive fluorescent ratiometry of dipicolinic acid by using terbium(iii)-modified carbon dots. Talanta 191:443–448

    Article  CAS  Google Scholar 

  14. Chen BB, Wang XY, Qian RC (2019) Rolling “wool-balls”: rapid live-cell mapping of membrane sialic acids via poly p-benzoquinone/ethylenediamine nanoclusters. Chem Commun 55(65):9681–9684

    Article  CAS  Google Scholar 

  15. Wang W, Lu YC, Huang H, Feng JJ, Chen JR, Wang AJ (2014) Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging. Analyst 139(7):1692–1696

    Article  CAS  Google Scholar 

  16. Huang H, Shen Z, Chen B, Wang X, Xia Q, Ge Z, Wang Y, Li X (2020) Selenium-doped two-photon fluorescent carbon nanodots for in-situ free radical scavenging in mitochondria. J Colloid Interf Sci 567:402–409

    Article  CAS  Google Scholar 

  17. Li H, Shao FQ, Zou SY, Yang QJ, Huang H, Feng JJ, Wang AJ (2016) Microwave-assisted synthesis of N, P-doped carbon dots for fluorescent cell imaging. Microchim Acta 183(2):821–826

    Article  CAS  Google Scholar 

  18. Zhang X, Wang C, Han Z, Xiao Y (2016) A photostable near-infrared fluorescent tracker with ph-independent specificity to lysosomes for long time and multicolor imaging. ACS Appl Mater Interfaces 6:21669–21676

    Article  Google Scholar 

  19. Yu HB, Xiao Y, Jin LJ (2012) A lysosome-targetable and two-photon fluorescent probe for monitoring endogenous and exogenous nitric oxide in living cells. J Am Chem Soc 134(42):17486–17489

    Article  CAS  Google Scholar 

  20. Zhu H, Fan J, Xu Q, Li H, Wang J, Gao P, Peng X (2012) Imaging of lysosomal pH changes with a fluorescent sensor containing a novel lysosome-locating group. Chem Commun 48(96):11766–11768

    Article  CAS  Google Scholar 

  21. Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130(30):11561–11561

    Article  CAS  Google Scholar 

  22. Chalmers S, Caldwell ST, Quin C, Prime TA, James AM, Cairns AG, Murphy MP, McCarron JG, Hartley RC (2012) Selective uncoupling of individual mitochondria within a cell using a mitochondria-targeted photoactivated protonophore. J Am Chem Soc 134(2):758–761

    Article  CAS  Google Scholar 

  23. Song W, Duan WX, Liu YH, Ye ZJ, Chen YL, Chen HL, Qi SD, Wu J, Liu D, Xiao LH, Ren CL, Chen XG (2017) Ratiometric detection of intracellular lysine and pH with one-pot synthesized dual emissive carbon dots. Anal Chem 89(3):13626–13633

    Article  CAS  Google Scholar 

  24. Yuan F, Yuan T, Sui L, Wang Z, Xi Z, Li Y, Li X, Fan L, Tan Z, Chen A, Jin M, Yang S (2018) Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat Commun 9(1):2249

    Article  Google Scholar 

  25. Wang N, Zheng AQ, Liu X, Chen JJ, Yang T, Chen ML, Wang JH (2018) Deep eutectic solvent assisted preparation of nitrogen/chloride doped carbon dots for intracellular biological sensing and live cell imaging. ACS Appl Mater Interfaces 10(9):7901–7909

    Article  CAS  Google Scholar 

  26. Tao SY, Lu SY, Geng YJ, Zhu SJ, Redfern SAT, Song YB, Feng TL, Xu WQ, Yang B (2018) Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials. Angew Chem Int Ed 57(9):2393–2398

    Article  CAS  Google Scholar 

  27. Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52(14):3953–3957

    Article  CAS  Google Scholar 

  28. Chen BB, Liu H, Huang CZ, Ling J, Wang J (2015) Rapid and convenient synthesis of stable silver nanoparticles with kiwi juice and its novel application for detecting protease K. New J Chem 39(2):1295–1300

    Article  CAS  Google Scholar 

  29. Liu ML, Zou HY, Li CM, Li RS, Huang CZ (2017) Aptamer modified-selenium nanoparticles for dark-field microscopy imaging of nucleolin. Chem Commun 53(97):13047–13050

    Article  CAS  Google Scholar 

  30. Rashid F, Horobin RW, Williams MA (1991) Predicting the behaviour and selectivity of fluorescent probes for lysosomes and related structures by means of structure-activity models. Histochem J 23(10):450–459

    Article  CAS  Google Scholar 

  31. Horobin RW, Rashid-Doubell F (2013) Predicting small molecule fluorescent probe localization in living cells using QSAR modeling. 2. Specifying probe, protocol and cell factors; selecting QSAR models; predicting entry and localization. Biotechnol Histochem 88(8):461–476

    Article  CAS  Google Scholar 

  32. Horobin RW, Rashid-Doubell F, Pediani JD, Milligan G (2013) Predicting mitochondrial targeting by small molecule xenobiotics within living cells using QSAR models. Biotechnol Histochem 88(8):440–460

    Article  CAS  Google Scholar 

  33. Corazzari I, Gilardino A, Dalmazzo S, Fubini B, Lovisolo D (2013) Localization of CdSe/ZnS quantum dots in the lysosomal acidic compartment of cultured neurons and its impact on viability: potential role of ion release. Toxicol in Vitro 27(2):752–759

    Article  CAS  Google Scholar 

  34. Zamberlan F, Turyanska L, Patane A, Liu Z, Williams HEL, Fay MW, Clarke PA, Imamura Y, Jin T, Bradshaw TD, Thomas NR, Grabowska AM (2018) Stable DHLA-PEG capped PbS quantum dots: from synthesis to near-infrared biomedical imaging. J Mater Chem B 6(4):550–555

    Article  CAS  Google Scholar 

  35. Dworak L, Roth S, Scheffer MP, Frangakis AS, Wachtveitl J (2018) A thin cdse shell boosts the electron transfer from cdte quantum dots to methylene blue. Nanoscale 10(4):2162–2169

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 21788102, 21777041, 21974046, 21977031), the Shanghai Science and Technology Committee (Grant Nos. 17520750100, 19391901700, 19520744000, 19ZR1472300), the National Science and Technology Major Project of China (2018ZX10302205), and the Fundamental Research Funds for the Central Universities (222201714008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruo Can Qian or Da Wei Li.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, S., Chen, B.B., Lv, J. et al. Label-free chlorine and nitrogen-doped fluorescent carbon dots for target imaging of lysosomes in living cells. Microchim Acta 187, 435 (2020). https://doi.org/10.1007/s00604-020-04412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04412-6

Keywords

Navigation