Skip to main content
Log in

Effect of the Conformation Changes of Polyelectrolytes on Organic Thermoelectric Performances

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The relationship between the conformation of a polyelectrolyte and the performance of organic thermoelectric multilayers was studied. The conformational change of a weak polyelectrolyte via controlling assembling pH gave rise to a different thermoelectric behaviour in thin films. Organic thermoelectric multilayers were fabricated by alternately depositing bilayers (BL) of a positively-charged polyaniline (PANi) and multiwalled carbon nanotubes (MWNT), stabilized in poly(acrylic acid) (PAA), via a layer-by-layer assembly technique. The electrical conductivity and See-beck coefficient of PANi/MWNT-PAA nanocomposites were measured by varying assembly pH of PAA solutions. Altering the deposition pH of PAA resulted in different thermoelectric performances. A 40 BL thin film (∼210 nm thick) of PANi/MWNT-PAA assembled at pH 2.5/6.5 exhibited electrical conductivity of 95.2 S/cm and a Seebeck coefficient of 35 µV/K. This translates to a power factor of 11.7 µW/m·K2, which is 50 times higher than that of the same film with all components deposited at pH 2.5. Enhancement of thermoelectric behaviour in PANi/MWNT-PAA nanocomposites is attributed to a conjugated π-π network, together with a tightly packed nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bizon, N. M. Tabatabaei, F. Blaabjerg, and E. Kurt, Energy Harvesting and Energy Efficiency, Springer, 2017.

  2. H. Teng, B. Kok, C. Uttraphan, and M. Yee, Int. J. Renew. Energy Res., 8, (2018).

  3. H. Shi, Z. Liu, and X. Mei, Energies, 13, 86 (2020).

    Article  Google Scholar 

  4. J. Chen and Z. L. Wang, Joule, 1, 480 (2017).

    Article  CAS  Google Scholar 

  5. G. Liu, J. Chen, H. Guo, M. Lai, X. Pu, X. Wang, and C. Hu, Nano Res., 11, 633 (2018).

    Article  CAS  Google Scholar 

  6. E. A. Scott, J. T. Gaskins, S. W. King, and P. E. Hopkins, APL Mater., 6, 058302 (2018).

    Article  Google Scholar 

  7. B. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc, and R. A. Segalman, Nat. Rev. Mater., 1, 16050 (2016).

    Article  CAS  Google Scholar 

  8. D. Teweldebrhan, V. Goyal, and A. A. Balandin, Nano Lett., 10, 1209 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. X. Shi, L. Chen, and C. Uher, Int. Mater. Rev., 61, 379 (2016).

    Article  CAS  Google Scholar 

  10. Y. Wang, Y. Sui, H. Fan, X. Wang, Y. Su, W. Su, and X. Liu, Chem. Mater., 21, 4653 (2009).

    Article  CAS  Google Scholar 

  11. S. Peng, D. Wang, J. Lu, M. He, C. Xu, Y. Li, and S. Zhu, J. Polym. Environ., 25, 1208 (2017).

    Article  CAS  Google Scholar 

  12. M. Culebras, K. Choi, and C. Cho, Micromachines, 9, 638 (2018).

    Article  Google Scholar 

  13. J. L. Blackburn, A. J. Ferguson, C. Cho, and J. C. Grunlan, Adv. Mater., 30, 1704386 (2018).

    Article  Google Scholar 

  14. J. P. Jurado, B. Dörling, O. Zapata-Arteaga, A. Roig, A. Mihi, and M. Campoy-Quiles, Adv. Energy Mater., 9, 1902385 (2019).

    Article  CAS  Google Scholar 

  15. K. Xu, G. Chen, and D. Qiu, Chem. Asian J., 10, 1225 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. W. Wang, S. Sun, S. Gu, H. Shen, Q. Zhang, J. Zhu, L. Wang, and W. Jiang, RSC Adv., 4, 26810 (2014).

    Article  CAS  Google Scholar 

  17. G. P. Moriarty, J. N. Wheeler, C. Yu, and J. C. Grunlan, Carbon, 50, 885 (2012).

    Article  CAS  Google Scholar 

  18. C. Cho, K. L. Wallace, P. Tzeng, J. H. Hsu, C. Yu, and J. C. Grunlan, Adv. Energy Mater., 6, 1502168 (2016).

    Article  Google Scholar 

  19. H. J. Lee, G. Anoop, H. J. Lee, C. Kim, J.-W. Park, J. Choi, H. Kim, Y.-J. Kim, E. Lee, and S.-G. Lee, Energy Environ. Sci., 9, 2806 (2016).

    Article  CAS  Google Scholar 

  20. C. Cho, M. Culebras, K. L. Wallace, Y. Song, K. Holder, J.-H. Hsu, C. Yu, and J. C. Grunlan, Nano Energy, 28, 426 (2016).

    Article  CAS  Google Scholar 

  21. X. Zhang, Y. Xu, X. Zhang, H. Wu, J. Shen, R. Chen, Y. Xiong, J. Li, and S. Guo, Prog. Polym. Sci., 89, 76 (2019).

    Article  CAS  Google Scholar 

  22. K. Ariga, E. Ahn, M. Park, and B. S. Kim, Chem. Asian J., 14, 2553 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. A. Palanisamy, V. Albright, and S. A. Sukhishvili, Chem. Mater., 29, 9084 (2017).

    Article  CAS  Google Scholar 

  24. E. A. Nagelli, L. Huang, A. Q. Z. Dai, F. Du, and L. Dai, Part. Part. Syst. Charact., 34, 1700131 (2017).

    Article  Google Scholar 

  25. R. McNeil Jr. and P. J. Paukstelis, Adv. Mater., 29, 1701019 (2017).

    Article  Google Scholar 

  26. R. Gao, X. Fang, and D. Yan, J. Mater. Chem. C, 6, 4444 (2018).

    Article  CAS  Google Scholar 

  27. G. Liu, Z. Jiang, C. Chen, L. Hou, B. Gao, H. Yang, H. Wu, F. Pan, P. Zhang, and X. Cao, J. Membr. Sci., 537, 229 (2017).

    Article  CAS  Google Scholar 

  28. Q. An, T. Huang, and F. Shi, Chem. Soc. Rev., 47, 5061 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. C. Cho, S. Qin, K. Choi, and J. C. Grunlan, ACS Appl. Polym. Mater., 1, 1942 (2019).

    Article  CAS  Google Scholar 

  30. T. Lindfors and A. Ivaska, J. Electroanal. Chem., 531, 43 (2002).

    Article  CAS  Google Scholar 

  31. C. Wang and K. Tam, J. Phys. Chem. B, 108, 8976 (2004).

    Article  CAS  Google Scholar 

  32. Y. Roiter and S. Minko, J. Phys. Chem. B, 111, 8597 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Y.-H. Yang, M. Haile, Y. T. Park, F. A. Malek, and J. C. Grunlan, Macromolecules, 44, 1450 (2011).

    Article  CAS  Google Scholar 

  34. S. S. Shiratori and M. F. Rubner, Macromolecules, 33, 4213 (2000).

    Article  CAS  Google Scholar 

  35. C. Cho, L. Valverde, G. A. Ozin, and N. S. Zacharia, Langmuir, 26, 13637 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. C. Cho and N. S. Zacharia, Langmuir, 28, 841 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. C. Cho and J. Son, Nanomaterials, 10, 41 (2020).

    Article  CAS  Google Scholar 

  38. M. Olek, J. Ostrander, S. Jurga, H. Möhwald, N. Kotov, K. Kempa, and M. Giersig, Nano Lett., 4, 1889 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chungyeon Cho.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This research was supported by Wonkwang University in 2020.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, K., Son, J., Park, Y.T. et al. Effect of the Conformation Changes of Polyelectrolytes on Organic Thermoelectric Performances. Macromol. Res. 28, 997–1002 (2020). https://doi.org/10.1007/s13233-020-8133-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8133-x

Keywords

Navigation