Skip to main content
Log in

Semiclassical asymptotic behavior of orthogonal polynomials

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Our goal is to find asymptotic formulas for orthonormal polynomials \(P_{n}(z)\) with the recurrence coefficients slowly stabilizing as \(n\rightarrow \infty \). To that end, we develop scattering theory of Jacobi operators with long-range coefficients and study the corresponding second-order difference equation. We introduce the Jost solutions \(f_{n}(z)\) of this equation by a condition for \(n\rightarrow \infty \) and suggest an Ansatz for them playing the role of the semiclassical Liouville–Green Ansatz for the corresponding solutions of the Schrödinger equation. This allows us to study Jacobi operators and their eigenfunctions \(P_{n}(z)\) by traditional methods of spectral theory developed for differential equations. In particular, we express all coefficients in asymptotic formulas for \(P_{n}(z)\) as \(\rightarrow \infty \) in terms of the Wronskian of the solutions \(\{P_{n} (z)\}\) and \(\{f_{n} (z)\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhiezer, N.: The Classical Moment Problem and Some Related Questions in Analysis. Oliver and Boyd, Edinburgh (1965)

    MATH  Google Scholar 

  2. Bernstein, S.: Sur les polynômes orthogonaux relatifs à un segment fini. J. Math. 9, 127–177 (1930)

    MATH  Google Scholar 

  3. Bernstein, S.: Sur les polynômes orthogonaux relatifs à un segment fini. J. Math. 10, 219–286 (1931)

    MATH  Google Scholar 

  4. Bodine, S., Lutz, D.: Asymptotic integration of differential and difference equations. In: LNM 2129. Springer, Berlin (2015)

  5. Boutet de Monvel, A., Sahbani, J.: Anisotropic Jacobi matrices with absolutely continuous spectrum. C. R. Acad. Sci. Paris Sér. I Math. 328(5), 443–448 (1999)

  6. Case, K.M.: Orthogonal polynomials from the viewpoint of scattering theory. J. Math. Phys 15, 2166–2174 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  7. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  8. Damanik, D., Simon, B.: Jost functions and Jost solutions for Jacobi matrices, I. A necessary and sufficient condition for Szegő asymptotics. Invent. Math. 165, 1–50 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. Deift, P.: Orthogonal polynomials and random matrices. A Riemann–Hilbert approach. In: NYU Lectures. AMS (2000)

  10. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 1, 2. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  11. Gilbert, D., Pearson, D.B.: On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators. J. Math. Anal. Appl. 128(2), 30–56 (1987)

    Article  MathSciNet  Google Scholar 

  12. Gončar, A.A.: On convergence of Padé approximants for some classes of meromorphic functions. Math. USSR Sb. 26, 555–575 (1975)

    Article  Google Scholar 

  13. Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  14. Jost, R.: Über die falschen Nullstellen der Eigenwerte des \(S\)-matrix. Helv. Phys. Acta 20, 250–266 (1947)

    Google Scholar 

  15. Killip, R., Simon, B.: Sum rules for Jacobi matrices and their applications to spectral theory. Ann. Math. 158, 253–321 (2003)

    Article  MathSciNet  Google Scholar 

  16. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon Press, Oxford (1965)

    MATH  Google Scholar 

  17. Lubinsky, D.S.: A survey of general orthogonal polynomials for weights on finite and infinite intervals. Acta Appl. Math. 10, 237–296 (1987)

    MathSciNet  MATH  Google Scholar 

  18. Máté, A., Nevai, P.: Orthogonal polynomials and absolutely continuous measures. In: Chui, C.K., Schumaker, L.L., Ward, J.D. (eds.) Approximation Theory IV, pp. 611–617. Academic Press, New York (1983)

    Google Scholar 

  19. Máté, A., Nevai, P., Totik, V.: Asymptotics for orthogonal polynomials defined by a recurrence relation. Constr. Approx. 1, 231–248 (1985)

    Article  MathSciNet  Google Scholar 

  20. Moreno, F., Martinez-Finkelshtein, A., Sousa, V.L.: Asymptotics of orthogonal polynomials for a weight with a jump on \([-1,1]\). Constr. Approx. 33(2), 219–263 (2011)

    Article  MathSciNet  Google Scholar 

  21. Mourre, E.: Absence of singular spectrum for certain self-adjoint operators. Commun. Math. Phys. 78, 391–400 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  22. Naboko, S.N., Yakovlev, S.I.: Discrete Schrödinger operator. The point spectrum on the continuous one. Saint-Petersburg Math. J. 4(3), 559–568 (1993)

    MATH  Google Scholar 

  23. Nevai, P.: Orthogonal Polynomials, Memoirs of the AMS, vol. 18, No. 213, Providence (1979)

  24. Nikishin, E.M.: Discrete Sturm–Liouville operators and some problems of function theory. J. Sov. Math. 35, 2679–2744 (1986)

    Article  Google Scholar 

  25. Pöschel, J.: Examples of discrete Schrödinger operators with pure point spectrum. Commun. Math. Phys. 88(3), 447–463 (1983)

    Article  ADS  Google Scholar 

  26. Stolz, G.: Spectral theory for slowly oscillating potentials I. Jacobi matrices. Manuscr. Math. 84, 245–260 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  27. Szegő, G.: Orthogonal Polynomials. American Mathematical Society, Providence (1978)

    MATH  Google Scholar 

  28. Totik, V.: Orthogonal polynomials. Surv. Approx. Theory 1, 70–125 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Van Assche, W.: Asymptotics for orthogonal polynomials and three-term recurrences. In: Orthogonal Polynomials (Columbus, OH, 1989) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 294, pp. 435–462 (1990)

  30. Van Assche, W., Geronimo, J.S.: Asymptotics of the orthogonal polynomials on and off the essential spectrum. J. Appr. Theory 55, 220–231 (1988)

    Article  MathSciNet  Google Scholar 

  31. Weidmann, J.: Lineare Operatoren in Hilberträumen. Teubner Verlag, Teil II, Anwendungen (2003)

    Book  Google Scholar 

  32. Yafaev, D.R.: Mathematical Scattering Theory: Analytic Theory. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

  33. Yafaev, D.R.: Analytic scattering theory for Jacobi operators and Bernstein–Szegő asymptotics of orthogonal polynomials. Rev. Math. Phys. 30(8), 1840019 (2018)

    Article  MathSciNet  Google Scholar 

  34. Yafaev, D.R.: A note on the Schrödinger operator with a long-range potential. Lett. Math. Phys. 109(12), 2625–2648 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Yafaev.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by project Russian Science Foundation 17-11-01126.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yafaev, D.R. Semiclassical asymptotic behavior of orthogonal polynomials. Lett Math Phys 110, 2857–2891 (2020). https://doi.org/10.1007/s11005-020-01313-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-020-01313-w

Keywords

Mathematics Subject Classification

Navigation