Skip to main content
Log in

Thermal decomposition of Prussian blue analogues in various gaseous media

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Prussian blue analogues with formulae Ni3[Co(CN)6]2·16H2O(I), Cu3[Co(CN)6]2·17H2O(II), Ni3[Fe(CN)6]2·15H2O(III) and Cu3[Fe(CN)6]2·13H2O(IV) have been synthesized. The thermal decomposition of all complexes in oxidizing (air), reducing (hydrogen) and inert (argon) atmospheres was studied in the temperature range from 20 to 1000 °C. TG–DSC curves were obtained; analysis of solid thermolysis products was performed. It was established that the decomposition process of all the studied compounds in air ends up to 450–500 °C, and mass loss continues up to 1000 °C in argon. Solid products of thermolysis are oxides of central ions (NiO, CuO, Co3O4, Fe3O4) in air; mixtures of metals or Ni3Fe (III) in argon; Ni and Co (I) and Ni3Fe + Fe(III), and mixtures of Cu + Co (II) and Cu + Fe(IV) in hydrogen. Hexacyanocobaltates are reduced at lower temperatures and more fully than hexacyanoferrates under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The inflection points of the TG curves corresponding to the transition from one process stage to the next.

  2. During thermolysis in hydrogen only.

  3. This BCC was used for comparison, since we were not able to synthesize the corresponding copper-containing BCC [Cu(NH3)4]3[Fe(CN)6]2.

References

  1. Pechenyuk SI, Domonov DP, Gosteva AN, Semushina YP, Shimkin AA. Thermal behavior of double complexes [Co(NH3)6][Fe(CN)6] and [Co(en)3][Fe(CN)6]·2H2O. Russ J Chem Chem Technol. 2018;61:49–56 (in Russian).

    CAS  Google Scholar 

  2. Domonov DP, Pechenyuk SI. Thermal behavior features of double complex [Ni(NH3)6]3[Fe(CN)6]2. Bull South Ural State Univ Ser Chem. 2016;8(4):52–60 (in Russian).

    Google Scholar 

  3. Krap CP, Balmaseda J, Zamora B, Reguera E. Hydrogen storage in the iron series of porous Prussian blue analogues. Int J Hydrogen Energy. 2010;35:10381–6. https://doi.org/10.1016/j.ijhydene.2010.07.109.

    Article  CAS  Google Scholar 

  4. Al-Hajjaj AA, Zamora B, Bavykin DV, Shah AA, Walsh FC, Reguera E. Sorption of hydrogen onto titanate nanotubes decorated with a nanostructured Cd3[Fe(CN)6]2 Prussian Blue analogue. Int J Hydrogen Energy. 2012;37:318–26. https://doi.org/10.1016/j.ijhydene.2011.09.094.

    Article  CAS  Google Scholar 

  5. Newton GN, Nihei M, Oshio H. Cianide-bridged molecular squares—the building units of prussian blue. Eur J Inorg Chem. 2011;20:3031–42. https://doi.org/10.1002/ejic.201100407.

    Article  CAS  Google Scholar 

  6. Ng CW, Ding J, Shi Y, Gan LM. Structure and magnetic properties of copper(II) hexacyanoferrate(III) compounds. J Phys Chem Solids. 2001;62:767–75. https://doi.org/10.1016/S0022-3697(00)00248-1.

    Article  CAS  Google Scholar 

  7. Ng CW, Ding J, Wang L, Gan LM, Quek CH. Thermal-induced microstructural changes of nickel-iron cyanide. J Phys Chem A. 2000;104:8814–22. https://doi.org/10.1021/jp000881w.

    Article  CAS  Google Scholar 

  8. Ng CW, Ding J, Gan LM. Microstructural changes induced by thermal treatment of cobalt(II) hexacyanoferrate(III) compound. J Solid State Chem. 2001;156:400–7. https://doi.org/10.1006/jssc.2000.9013.

    Article  CAS  Google Scholar 

  9. Pejakovic DA, Mansonb JL, Miller JS, Epstein AJ. Photoinduced magnetism in a cluster glass: Co–Fe Prussian blue. Synth Met. 2001;122:529–33.

    Article  CAS  Google Scholar 

  10. Sato O. Photoinduced magnetization in molecular compounds. J Photochem Photobiol Cc Photochem Rev. 2004;5:203–23. https://doi.org/10.1016/j.jphotochemrev.2004.

    Article  CAS  Google Scholar 

  11. Roy X, Thompson LK, Coombs N, MacLachlan MJ. Mesostructured Prussian Blue analogues. Angew Chem Int Ed. 2008;47(3):511–4. https://doi.org/10.1002/anie.200703627.

    Article  CAS  Google Scholar 

  12. Karyakin AA. Prussian Blue and its analogues: electrochemistry and analytical applications. Electroanalysis. 2001;13:813–9. https://doi.org/10.1002/1521-4109(200106)13:10%3c813:AID-ELAN813%3e3.0.CO;2-Z.

    Article  CAS  Google Scholar 

  13. Pournaghi-Azar MH, Dastangoo H. Palladized aluminum as a novel substrate for the non-electrolytic preparation of a Prussian Blue film modified electrode. J Electroanalytical Chem. 2004;573:355–64. https://doi.org/10.1016/j.jelechem.2004.07.02.

    Article  CAS  Google Scholar 

  14. Piernas-Munoz MJ, Castillo-Martínez E, Roddatis V, Armand M, Rojo T. K1-xFe2 + x/3(CN)6 yH2O, Prussian Blue as a displacement anode for lithium ion batteries. J Power Sources. 2014;271:489–96. https://doi.org/10.1016/j.jpowsour.2014.08.025.

    Article  CAS  Google Scholar 

  15. Yuan Y, Wang J, Hu Z, Lei H, Tian D, Jiao Sh. Na2Co3[Fe(CN)6]2: a promising cathode material for lithium-ion and sodium-ion batteries. J Alloys Compd. 2016;685:344–9. https://doi.org/10.1016/j.jallcom.2016.05.335.

    Article  CAS  Google Scholar 

  16. Xie B, Zuo P, Wang L, Wang J, Huo H, He M, Shu J, Li H, Lou Sh, Yin G. Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. Nano Energy. 2019;61:201–10. https://doi.org/10.1016/j.nanoen.2019.04.059.

    Article  CAS  Google Scholar 

  17. Beauvais LG, Shores MP, Long JR. Cyano-bridged Re6Q8 (Q = S, Se) Cluster-Cobalt(II) framework materials: versatile solid chemical sensors. J Am Chem Soc. 2000;122:2763–72.

    Article  CAS  Google Scholar 

  18. Ricci F, Palleschi G. Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron. 2005;21:389–407. https://doi.org/10.1016/j.bios.2004.12.001.

    Article  CAS  PubMed  Google Scholar 

  19. Haghighi B, Hamidi H, Gorton L. Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode. Sensors Actuat B. 2010;147:270–6. https://doi.org/10.1016/j.snb.2010.03.020.

    Article  CAS  Google Scholar 

  20. Wang M, Yang L, Hu B, Liu J, He L, Jia Q, Songa Y, Zhang Zh. Bimetallic NiFe oxide structures derived from hollow NiFe Prussian blue nanobox for label-free electrochemical biosensing adenosine triphosphate. Biosens Bioelectron. 2018;113:16–24. https://doi.org/10.1016/j.bios.2018.04.050.

    Article  CAS  PubMed  Google Scholar 

  21. Liu PS, Cui G, Guo YJ. A lightweight porous ceramic foam loading Prussian blue analogue for removal of toxic ions in water. Mater Lett. 2016;182:273–6. https://doi.org/10.1016/j.matlet.2016.07.019.

    Article  CAS  Google Scholar 

  22. Chang S, Chang L, Han W, Li Z, Dai Y, Zhang H. In situ green production of Prussian blue/natural porous framework nanocomposites for radioactive Cs+ removal. J Radioanalytical Nucl Chem. 2018;316:209–19. https://doi.org/10.1007/s10967-018-5767-7.

    Article  CAS  Google Scholar 

  23. Adak S, Daemen LL, Hartl M, Williams D, Summerhill J, Nakotte H. Thermal expansion in 3D-metal prussian blue analogs–a survey study. J Solid State Chem. 2011;184:2854–61. https://doi.org/10.1016/j.jssc.2011.08.030.

    Article  CAS  Google Scholar 

  24. Pang H, Deng J, Du J, Li S, Li J, Ma Y, Zhang J, Chen J. Porous nanocubic Mn3O4–Co3O4 composites and their application as electrochemical supercapacitors. Dalton Trans. 2012;41:10175–81. https://doi.org/10.1039/c2dt31012k.

    Article  CAS  PubMed  Google Scholar 

  25. Zakaria MB, Belik AA, Liu C-H, Hsieh H-Y, Liao Y-T, Malgras V, Yamauchi Y, Wu KC-W. Prussian blue derived nanoporous iron oxides as anticancer drug carriers for magnetic-guided chemotherapy. Chem Asian J. 2015;10:1457–62. https://doi.org/10.1002/asia.201500232.

    Article  CAS  PubMed  Google Scholar 

  26. Hu L, Huang Y, Chen Q. FexCo3−xO4 nanoporous particles stemmed from metal–organic frameworks Fe3[Co(CN)6]2: a highly efficient material for removal of organic dyes from water. J Alloys Compd. 2013;559:57–63. https://doi.org/10.1016/j.jallcom.2013.01.095.

    Article  CAS  Google Scholar 

  27. Aparicio C, Machala L, Marusak Z. Thermal decomposition of Prussian blue under inert atmosphere. J Therm Anal Calorim. 2012;110:661–9. https://doi.org/10.1007/s10973-011-1890-1.

    Article  CAS  Google Scholar 

  28. Inoue H, Narino Sh, Yoshioka N, Fluck E. Thermal decomposition of prussian blue analogues of the type Fe[Fe(CN)5NO]. Z Naturforsch. 2000;55:685–90.

    Article  CAS  Google Scholar 

  29. Zakaria MB, Chikyowac T. Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments. Coord Chem Rev. 2017;352:328–45. https://doi.org/10.1016/j.ccr.2017.09.014.

    Article  CAS  Google Scholar 

  30. JCPDS-JCDD Card. Newtown Square (PA, USA): International Centre for Diffraction Data, 2002.

  31. Pechenyuk SI, Domonov DP, Ivanov YV, Shimkin AA. Thermal decomposition of iron cyano complexes in an inert atmosphere. Russ Chem Bull. 2015;64:322–8. https://doi.org/10.1007/s11172-015-0862-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Domonov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domonov, D.P., Pechenyuk, S.I. & Semushina, Y.P. Thermal decomposition of Prussian blue analogues in various gaseous media. J Therm Anal Calorim 146, 629–635 (2021). https://doi.org/10.1007/s10973-020-09936-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09936-w

Keywords

Navigation