Skip to main content
Log in

Transmission and Navigation on Disordered Lattice Networks, Directed Spanning Forests and Brownian Web

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Stochastic networks based on random point sets as nodes have attracted considerable interest in many applications, particularly in communication networks, including wireless sensor networks, peer-to-peer networks and so on. The study of such networks generally requires the nodes to be independently and uniformly distributed as a Poisson point process. In this work, we venture beyond this standard paradigm and investigate the stochastic geometry of networks obtained from directed spanning forests (DSF) based on randomly perturbed lattices, which have desirable statistical properties as a models of spatially dependent point fields. In the regime of low disorder, we show in 2D and 3D that the DSF almost surely consists of a single tree. In 2D, we further establish that the DSF, as a collection of paths, converges under diffusive scaling to the Brownian web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arratia, R.: Coalescing Brownian motions on the line. Ph.D. Thesis, University of Wisconsin, Madison (1979)

  2. Arratia, R.: Coalescing Brownian motions and the voter model on \(\mathbb{Z}\). Unpublished partial manuscript

  3. Asmussen, S.: Applied Probability and Queues. Springer, New York (2003)

    MATH  Google Scholar 

  4. Athreya, S., Roy, R., Sarkar, A.: Random directed trees and forest- drainage networks with dependence. Electron. J. Prob. 13, 2160–2189 (2008)

    Article  MathSciNet  Google Scholar 

  5. Baccelli, F., Błaszczyszyn, B.: Stochastic Geometry and Wireless Networks, Vol. I—Theory, Volume 3, No 3–4 of Foundations and Trends in Networking (2009)

  6. Baccelli, F., Błaszczyszyn, B.: Stochastic geometry and wireless networks: volume II applications. Found. Trends Netw. 4(1–2), 1–312 (2010)

    MATH  Google Scholar 

  7. Baccelli, F., Bordenave, C.: The radial spanning tree of a Poisson point process. Ann. Appl. Probab. 17, 305–359 (2007)

    Article  MathSciNet  Google Scholar 

  8. Baccelli, F., Kofman, D., Rougier, J-L.: Self organizing hierarchical multicast trees and their optimization. In: IEEE INFOCOM’99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No. 99CH36320), vol. 3, pp. 1081-1089 (1999)

  9. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1–3), 1–101 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bordenave, C.: Navigation on a Poisson point process. Ann. Appl. Probab. 18(2), 708–746 (2008)

    Article  MathSciNet  Google Scholar 

  11. Coletti, C.F., Valle, G.: Convergence to The Brownian Web for a generalization of the drainage network model. Ann. Inst. H. Poincaré Probab. Stat. 50, 899–919 (2014)

    Article  MathSciNet  Google Scholar 

  12. Coletti, C.F., Fontes, L.R.G., Dias, E.S.: Scaling limit for a drainage network model. J. Appl. Probab. 46, 1184–1197 (2009)

    Article  MathSciNet  Google Scholar 

  13. Continuum percolation. Texts in Mathematics, vol. 119, Cambridge University Press, New York (1996)

  14. Coupier, D., Tran, V.C.: The Directed Spanning Forest is almost surely a tree. Random Struct. Algorithms 42, 59–72 (2013)

    Article  MathSciNet  Google Scholar 

  15. Coupier, D., Saha, K., Sarkar, A., Tran, V.C.: The 2-d directed spanning forest converges to the Brownian web. arXiv: 1805.09399

  16. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: scalable coordination in sensor networks. In: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 263–270 (1999)

  17. Ferrari, P.A., Landim, C., Thorisson, H.: Poisson trees, succession lines and coalescing random walks. Ann. Inst. H. Poincaré Probab. Stat. 40, 141–152 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ferrari, P.A., Fontes, L.R.G., Wu, X.-Y.: Two-dimensional Poisson Trees converge to the Brownian web. Ann. Inst. H. Poincaré Probab. Stat. 41, 851–858 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. Fontes, L.R.G., Isopi, M., Newman, C.M., Ravishankar, K.: The Brownian web: characterization and convergence. Ann. Probab. 32(4), 2857–2883 (2004)

    Article  MathSciNet  Google Scholar 

  20. Gangopadhyay, S., Roy, R., Sarkar, A.: Random oriented Trees: a Model of drainage networks. Ann. Appl. Probab. 14, 1242–1266 (2004)

    Article  MathSciNet  Google Scholar 

  21. Ghosh, S., Lebowitz, J.L.: Fluctuations, large deviations and rigidity in hyperuniform systems: a brief survey. Indian J. Pure Appl. Math. 48(4), 609–631 (2017)

    Article  MathSciNet  Google Scholar 

  22. Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 163–170 (2000)

  23. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proceedings 11 th Canadian Conference on Computational Geometry (1999)

  24. Levin, D., Peres, Y., Wilmer, E.: Markov Chains and Mixing Times. American Mathematical Society, Providence, RI (2009)

    MATH  Google Scholar 

  25. Newman, C.M., Ravishankar, K., Sun, R.: Convergence of coalescing nonsimple random walks to the Brownian web. Electron. J. Prob. 10, 21–60 (2005)

    Article  MathSciNet  Google Scholar 

  26. Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  27. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated objects in a distributed environment. Theory Comput. Syst. 32(3), 241–280 (1999)

    Article  MathSciNet  Google Scholar 

  28. Roy, R., Saha, K., Sarkar, A.: Random directed forest and the Brownian web. Ann. Inst. Henri Poincaré 52(3), 1106–1143 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Sarkar, A., Sun, R.: Brownian web in the scaling limit of supercritical oriented percolation in dimension 1 + 1. Electron. J. Probab. 18(21), 1–23 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Schertzer, E., Sun, R., Swart, J.: The Brownian web, the Brownian net, and their universality. In Advances in Disordered Systems, Random Processes and Some Applications, pp. 270–368. Cambridge University Press, 2017. Survey based on a course given in the Institut Henri Poincaré trimestre program on Disordered Systems, Random Spatial Processes and Some Applications, Jan. 5–Apr. 3 (2015)

  31. Soucaliuc, F., Tóth, B., Werner, W.: Reflection and coalescence between one-dimensional Brownian paths. Ann. Inst. Henri Poincaré. Probab. Stat. 36, 509–536 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  32. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    Book  Google Scholar 

  33. Torquato, S., Stillinger, F.: Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 68, 041113 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  34. Tóth, B., Werner, W.: The true self-repelling motion. Ann. Appl. Probab. 111(3), 375–452 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Tóth, B., Valle, G., Zuaznábar, L.: A version of the random directed forest and its convergence to the Brownian web. arXiv:1704.05555

Download references

Acknowledgements

We are grateful to the referees for their careful reading of the manuscript and their illuminating comments and suggestions. S.G. was supported in part by the MOE Grant R-146-000-250-133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhroshekhar Ghosh.

Additional information

Communicated by Ivan Corwin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Saha, K. Transmission and Navigation on Disordered Lattice Networks, Directed Spanning Forests and Brownian Web. J Stat Phys 180, 1167–1205 (2020). https://doi.org/10.1007/s10955-020-02604-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02604-1

Navigation