Skip to main content

Advertisement

Log in

Preparation and properties of SnO2/nitrogen-doped foamed carbon as anode materials for lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The excellent lithium storage capacity of SnO2 makes it as a potential candidate for a new generation of lithium ion battery anodes. However, the large volume change (≥ 300%) produced during the deintercalation of lithium and the irreversible capacity generated by the conversion of SnO2 into Sn both inhibit the application of SnO2 on the negative electrode of lithium ion batteries. In order to solve these problems, SnO2 nanoparticles were grown in the vesicles or on the skeleton of the nitrogen-doped foamed carbon. Due to the high mechanical strength and elasticity of porous structure, the foamed carbon serves as a buffering agent and provides space for volume expansion generated during the process of deintercalation lithium, and thus promotes the cycle stability of electrode. Furthermore, the incorporation of N atoms increases the electrical conductivity and active sites of the foamed carbon, which further improves the electrochemical performance of the composites. Consequently, the obtained NC/SnO2 electrode has a specific high capacity exceeding 750 mAh/g after 100 cycles at a current density of 0.1 A/g. The specific capacity of the battery also reaches a high level (≥ 450 mAh/g) at high current charge and discharge(1.6 A/g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  PubMed  Google Scholar 

  2. Zhang QF, Uchaker E, Candelaria SL, Cao GZ (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171

    Article  CAS  PubMed  Google Scholar 

  3. Paek SM, Yoo EJ, Honma I (2008) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9:72–75

    Article  CAS  Google Scholar 

  4. Hu RZ, Ouyang YP, Liang T, Wang H, Liu J, Chen J, Yang CH, Yang LC, Zhu M (2017) Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv Mater 29:1605006

    Article  CAS  Google Scholar 

  5. Zhang J, Ren H, Wang JY, Qi J, Yu RB, Wang D, Liu YL (2016) Engineering of multi-shelled SnO2 hollow microspheres for highly stable lithium-ion batteries. J Mater Chem A 4:17673–17677

    Article  CAS  Google Scholar 

  6. Yu XY, Hu H, Wang YW, Chen HY, Lou XW (2015) Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew Chem Int Ed 54:7395–7398

    Article  CAS  Google Scholar 

  7. Yu XY, Wu HB, Yu L, Ma FX, Lou XW (2015) Rutile TiO2 submicroboxes with superior lithium storage properties. Angew Chem Int Ed 54:4001–4004

    Article  CAS  Google Scholar 

  8. Kim C, Jung JW, Yoon KR, Youn DY, PARK S, Kim ID (2016) A high-capacity and long-cycle-life lithium-ion battery anode architecture: silver nanoparticle-decorated SnO2/NiO nanotubes. ACS Nano 10:11317–11326

    Article  CAS  PubMed  Google Scholar 

  9. Wang HK, Lu X, Li LC, Li BB, Cao DX, Wu QZ, Li ZH, Yang G, Guo BL, Niu CM (2016) Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries. Nanoscale 8:7595–7603

    Article  CAS  PubMed  Google Scholar 

  10. Hong Y, Mao WF, Hu QQ, Chang SY, Li DJ, Zhang JB, Liu G, Ai G (2019) Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes. J Power Sources 428:44–52

    Article  CAS  Google Scholar 

  11. Xia L, Wang SQ, Liu GX, Li DD, Wang HH, Qiao SZ (2016) Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12:853–859

    Article  CAS  PubMed  Google Scholar 

  12. Liu L, Xie F, Lyu J, Zhao TK, Li TH, Choi BG (2016) Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries. J Power Sources 321:11–35

    Article  CAS  Google Scholar 

  13. Zhu Y, Guo H, Zhai H, Gao C (2015) Microwave-assisted and gram-scale synthesis of ultrathin SnO2 nanosheets with enhanced lithium storage properties. ACS Appl Mater Interfaces 7:2745–2753

    Article  CAS  PubMed  Google Scholar 

  14. Etacheri V, Seisenbaeva GA, Caruthers J, Daniel G, Nedelec JM, Kessler VG, Pol VG (2015) Ordered network of inter-connected SnO2 nanoparticles for excellent lithium-ion storage. Adv Energy Mater 5:1401289

    Article  CAS  Google Scholar 

  15. Sun JH, Xiao LH, Jiang SD, Li GX, Huang Y, Geng JX (2015) Fluorine-doped SnO2@ graphene porous composite for high capacity lithium-ion batteries. Chem Mater 27:4594–4603

    Article  CAS  Google Scholar 

  16. Niu CJ, Meng JS, Wang XP, Han CH, Yan MY, Zhao KN, Xu XM, Ren WH, Zhao YL, Xu L, Zhang QJ, Zhao DY, Mai LQ (2015) General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat Commun 6:7402

    Article  PubMed  Google Scholar 

  17. Wu H, Yu GH, Pan LJ, Liu N, McDowell MT, Bao ZN, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943

    Article  PubMed  CAS  Google Scholar 

  18. Zhou XS, Wan LJ, Guo YG (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25:2152–2157

    Article  CAS  PubMed  Google Scholar 

  19. Shen EH, Wang CL, Wang EB, Kang ZK, Gao L, Hu CW, Xu L (2004) PEG-assisted synthesis of SnO2 nanoparticles. Mater Lett 58:3761–3764

    Article  CAS  Google Scholar 

  20. Park MS, Wang GX, Kang YM, Wexler D, Dou SX, Liu HK (2007) Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew Chem Int Ed 46:750–753

    Article  CAS  Google Scholar 

  21. Liu LZ, Li XX, Wu XL, Chen XT, Chu PK (2011) Growth of tin oxide nanorods induced by nanocube-oriented coalescence mechanism. Appl Phys Lett 98:133102

    Article  CAS  Google Scholar 

  22. Dai ZR, Pan ZW, Wang ZL (2003) Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater 13:9–24

    Article  Google Scholar 

  23. Wang C, Zhou Y, Ge MY, Xu XB, Zhang ZL, Jiang JZ (2009) Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J Am Chem Soc 132:46–47

    Article  CAS  Google Scholar 

  24. Wang H, Liang QQ, Wang WJ, An Y, Li JH, Guo L (2011) Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage. Cryst Growth Des 11:2942–2947

    Article  CAS  Google Scholar 

  25. Kim H, Seo DH, Kim SW, Kim J, Kang K (2011) Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon 49:326–332

    Article  CAS  Google Scholar 

  26. Wang XY, Zhou FX, Yao K, Zhang JG, Liu ZP (2011) A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49:133–139

    Article  CAS  Google Scholar 

  27. Zhang M, Lei DN, Du ZF, Yin XM, Chen LB, Li QH, Wang YG, Wang TH (2011) Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J Mater Chem 21:1673–1676

    Article  CAS  Google Scholar 

  28. Zhou D, Song WL, Fan LZ (2015) Hollow core–shell SnO2/C fibers as highly stable anodes for lithium-ion batteries. ACS Appl Mater Interfaces 7:21472–21478

    Article  CAS  PubMed  Google Scholar 

  29. Huang B, Li XH, Pei Y, Li S, Cao X, Masse RC, Cao GZ (2016) Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small 12:1945–1955

    Article  CAS  PubMed  Google Scholar 

  30. Gu X, Chen L, Ju ZC, Xu HY, Yang J, Qian YT (2013) Controlled growth of porous α-Fe2O3 branches on β-MnO2 nanorods for excellent performance in lithium-ion batteries. Adv Funct Mater 23:4049–4056

    Article  CAS  Google Scholar 

  31. Chen ZX, Zhou M, Cao YL, Ai XP, Yang HX, Liu J (2012) In situ generation of few-layer graphene coatings on SnO2-SiC core-shell nanoparticles for high-performance lithium-ion storage. Adv Energy Mater 2:95–102

    Article  CAS  Google Scholar 

  32. Jiang LY, Wu XL, Guo YG, Wan LG (2009) SnO2-based hierarchical nanomicrostructures: facile synthesis and their applications in gas sensors and lithium-ion batteries. J Phys Chem C 113:14213–14219

    Article  CAS  Google Scholar 

  33. Han F, Li WC, Li MR, Lu AH (2012) Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. J Mater Chem 22:9645–9651

    Article  CAS  Google Scholar 

  34. Yang S, Yue WB, Zhu J, Ren Y, Yang XJ (2013) Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv Funct Mater 23:3570–3576

    Article  CAS  Google Scholar 

  35. Chen JS, Cheah YL, Chen YT, Jayaprakash N, Madhavi S, Yang YH, Lou XW (2009) SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. J Phys Chem C 113:20504–20508

    Article  CAS  Google Scholar 

  36. Wang L, Wang D, Dong ZH, Zhang FX, Jin J (2013) Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery. Nano Lett 13:1711–1716

    Article  CAS  PubMed  Google Scholar 

  37. Wu P, Du N, Zhang H, Yu JX, Yang D (2011) CNTs@ SnO2@ C coaxial nanocables with highly reversible lithium storage. J Phys Chem C 114:22535–22538

    Article  CAS  Google Scholar 

  38. Kang E, Jung YS, Cavanagh AS, Kim GH, George SM, Dillon AC, Kim JK, Lee J (2011) Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv Funct Mater 21:2430–2438

    Article  CAS  Google Scholar 

  39. Zhang M, Uchaker E, Hu S, Zhang QF, Wang TH, Cao GZ, Li JY (2013) CoO–carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithium-ion batteries with enhanced properties. Nanoscale 5:12342–12349

    Article  CAS  PubMed  Google Scholar 

  40. Zhou XS, Dai ZH, Liu SH, Bao JC, Guo YG (2014) Ultra-uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes. Adv Mater 26:3943–3949

    Article  CAS  PubMed  Google Scholar 

  41. Dirican M, Yanilmaz M, Fu K, Lu Y, Kizil H, Zhang X (2014) Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries. J Power Sources 264:240–247

    Article  CAS  Google Scholar 

  42. Shao QG, Tang J, Sun YG, Li J, Zhang K, Yuan JS, Zhu DM, Qin LC (2017) Unique interconnected graphene/SnO2 nanoparticle spherical multilayers for lithium-ion battery applications. Nanoscale 9:4439–4444

    Article  CAS  PubMed  Google Scholar 

  43. Zhai DY, Du HD, Li BH, Zhu Y, Kang FY (2011) Porous graphitic carbons prepared by combining chemical activation with catalytic graphitization. Carbon 49:725–729

    Article  CAS  Google Scholar 

  44. Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH (2011) High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:4532–4539

    Article  CAS  Google Scholar 

  45. Zhang LZ, Jia Y, Gao GP, Yan XC, Chen N, Chen J, Soo MT, Wood B, Yang DJ, Du AJ, Yao XD (2018) Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4:285–297

    Article  CAS  Google Scholar 

  46. Zhang CF, Peng X, Guo ZP, Cai CB, Chen CX, Wexler D, Li S, Liu H (2012) Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon 50:1897–1903

    Article  CAS  Google Scholar 

  47. Su YZ, Li S, Wu DQ, Zhang F, Liang HW, Gao PF, Cheng C, Feng XL (2012) Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 6:8349–8356

    Article  CAS  PubMed  Google Scholar 

  48. Lian PC, Wang JY, Cai DD, Ding LX, Jia QM, Wang HH (2014) Porous SnO2@C /graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries. Electrochim Acta 116:103–110

    Article  CAS  Google Scholar 

  49. Fu MS, Ni L, Du N (2014) Self-templated porous hierarchical SnO2 ceramics with enhanced lithium storage capacity. J Alloys Compd 591:65–71

    Article  CAS  Google Scholar 

  50. Song HW, Li N, Cui H, Wang CX (2014) Monodisperse SnO2 nanocrystals functionalized multiwalled carbon nanotubes for large rate and long lifespan anode materials in lithium ion batteries. Electrochim Acta 120:46–51

    Article  CAS  Google Scholar 

  51. Zhou XY, Huang B, Zou YL, Xie J, Yang J (2014) Cotton-templated fabrication of hierarchical SnO2 mesoporous microtubes as the anode material of lithium ion battery. Mater Lett 120:279–282

    Article  CAS  Google Scholar 

  52. Tian QH, Tian Y, Zhang ZX, Yang L, Hirano SL (2014) Facile synthesis of ultrasmall tin oxide nanoparticles embedded in carbon as high-performance anode for lithium-ion batteries. J Power Sources 269:479–485

    Article  CAS  Google Scholar 

  53. Qin J, He CN, Zhao NQ, Wang ZY, Shi CS, Liu EZ, Li JJ (2014) Graphene networks anchored with Sn@ graphene as lithium ion battery anode. ACS Nano 8:1728–1738

    Article  CAS  PubMed  Google Scholar 

  54. Wang RH, Xu CH, Sun J, Gao L, Yao HL (2014) Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Appl Mater Interfaces 6:3427–3436

    Article  CAS  PubMed  Google Scholar 

  55. Bindumadhavan K, Chang PY, Doong R (2017) Silver nanoparticles embedded boron-doped reduced graphene oxide as anode material for high performance lithium ion battery. Electrochim Acta 243:282–290

    Article  CAS  Google Scholar 

  56. Winkler V, Kilibarda G, Schlabach S, Szabo DV, Hanemann T, Bruns M (2016) Surface analytical study regarding the solid electrolyte interphase composition of nanoparticulate SnO2 anodes for Li-ion batteries. J Phys Chem C 120:24706–24714

    Article  CAS  Google Scholar 

Download references

Funding

Support was provided by the Graduate Innovative Fund of Wuhan Institute of Technology (NO. CX2018050), the Innovation and Entrepreneurship Training Program for College Students of Hubei province (NO. S201910490029), the National Natural Science Foundation of China (NO. 11504277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanrong Deng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, D., Yang, J. et al. Preparation and properties of SnO2/nitrogen-doped foamed carbon as anode materials for lithium ion batteries. Ionics 26, 5333–5341 (2020). https://doi.org/10.1007/s11581-020-03678-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03678-3

Keywords

Navigation