Skip to main content
Log in

Optimization of a Droplet-Based Millifluidic Device to Investigate the Phase Behavior of Biopolymers, Including Viscous Conditions

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Phase diagrams are widely used to map and control the assembly states of biopolymers. However, these studies are highly time and material consuming. Here, we present the optimization of a simple tool based on millifluidics to screen phase diagram of biopolymers, pure or in mixtures with other biopolymers. It is used (i) to generate a homogeneous mixture of biopolymers/buffer and/or biopolymers 1/ biopolymers 2 in a short time (~s), (ii) to vary the composition of the mixtures by adjusting the flow rates, and (iii) to determine the turbidity of the drop by grey level analysis. The mixing efficiency and the calibration turbidity vs. grey level were performed using colloidal titanium dioxide dispersions. The use of millifluidics reduced the amount of material of ten-fold and the experimentation time by a factor five compared to a conventional bulk approach. This set-up was used to explore functional synergies between proteins and polysaccharides as an example of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Schmitt, S.L. Turgeon, Adv. Colloid Interf. Sci. 167(1-2), 63–70 (2011)

    Article  CAS  Google Scholar 

  2. F. Weinbreck, M. Minor, C.G. de Kruif, J. Microencapsul. 21(6), 667–679 (2004)

    Article  CAS  Google Scholar 

  3. J. Shim, G. Cristobal, D.R. Link, T. Thorsen, Y. Jia, K. Piattelli, S. Fraden, J. Am, Chem. Soc. 129, 8825 (2007)

    Article  CAS  Google Scholar 

  4. J. Leng, M. Joanicot, A. Ajdari, Langmuir 23(5), 2315–2317 (2007)

    Article  CAS  Google Scholar 

  5. H. Mao, C. Li, Y. Zhang, D.E. Bergbreiter, P.S. Cremer, J. Am. Chem. Soc. 125(10), 2850–2851 (2003)

    Article  CAS  Google Scholar 

  6. C.J. Gerdts, V. Tereshko, M.K. Yadav, I. Dementieva, F. Collart, A. Joachimiak, R.C. Stevens, P. Kuhn, A. Kossiakoff, F. Rustem, Angew Chem Int Ed Engl 45, 8156 (2006)

    Article  CAS  Google Scholar 

  7. C.L. Hansen, M.O.A. Sommer, S.R. Quake, Proc. Natl. Acad. Sci. U. S. A. 101(40), 14431–14436 (2004)

    Article  CAS  Google Scholar 

  8. E. Quevedo, J. Steinbacher, D.T. McQuade, J. Am. Chem. Soc. 127(30), 10498–10499 (2005)

    Article  CAS  Google Scholar 

  9. N. Lorber, F. Sarrazin, P. Guillot, P. Panizza, A. Colin, B. Pavageau, C. Hany, P. Maestro, S. Marre, T. Delclos, C. Aymonier, P. Subra, L. Prat, C. Gourdon, E. Mignard, Lab Chip 11, 779 (2011)

    Article  CAS  Google Scholar 

  10. S. Zhang, N. Ferté, N. Candoni, S. Veesler, Org. Process. Res. Dev. 19(12), 1837–1841 (2015)

    Article  CAS  Google Scholar 

  11. S. Zhang, C.J.J. Gerard, A. Ikni, G. Ferry, L.M. Vuillard, J.A. Boutin, N. Ferte, R. Grossier, N. Candoni, S. Veesler, J. Cryst. Growth 472, 18–28 (2017)

    Article  CAS  Google Scholar 

  12. M. Ildefonso, N. Candoni, S. Veesler, Org. Process. Res. Dev. 16(4), 556–560 (2012)

    Article  CAS  Google Scholar 

  13. C. Amine, A. Boire, J. Davy, M. Marquis, and D. Renard, Food Hydrocoll. 70, (2017)

  14. P.B. Umbanhowar, P.B. Prasad, D.A. Weitz, Langmuir 16(2), 347–351 (2000)

    Article  CAS  Google Scholar 

  15. N.-S. Cheng, Ind. Eng. Chem. Res. 47(9), 3285–3288 (2008)

    Article  CAS  Google Scholar 

  16. C.-Y. Lee, C.-L. Chang, Y.-N. Wang, L.-M. Fu, Int. J. Mol. Sci. 12(5), 3263–3287 (2011)

    Article  CAS  Google Scholar 

  17. P. Guillot, A. Ajdari, J. Goyon, M. Joanicot, A. Colin, Comptes Rendus Chim. 12(1-2), 247–257 (2009)

    Article  CAS  Google Scholar 

  18. M.-F. Devaux, A. Sire, and P. Papineau, Le Cah. Des Tech. l’Inra 93 (2009)

  19. J. Serra, Image analysis and mathematical morphology, Academic p (1982)

  20. H. Song, M.R. Bringer, J.D. Tice, C.J. Gerdts, R.F. Ismagilov, Appl. Phys. Lett. 83(22), 4664–4666 (2003)

    Article  CAS  Google Scholar 

  21. H. Song, J.D. Tice, R.F. Ismagilov, Angew. Chemie Int. Ed. 42(7), 768–772 (2003)

    Article  CAS  Google Scholar 

  22. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides, Science (80-. ). 295, (2002)

  23. J.M. Ottino, Chem. Eng. Sci. 49(24), 4005–4027 (1994)

    Article  CAS  Google Scholar 

  24. T. Yasui, Y. Omoto, K. Osato, N. Kaji, N. Suzuki, T. Naito, M. Watanabe, Y. Okamoto, M. Tokeshi, E. Shamoto, Y. Baba, Lab Chip 11(19), 3356 (2011)

    Article  CAS  Google Scholar 

  25. W. Engl, M. Tachibana, P. Panizza, R. Backov, Int. J. Multiph. Flow 33(8), 897–903 (2007)

    Article  CAS  Google Scholar 

  26. C. Cramer, P. Fischer, E.J. Windhab, Chem. Eng. Sci. 59(15), 3045–3058 (2004)

    Article  CAS  Google Scholar 

  27. H.N. Oguz, A. Prosperetti, J. Fluid Mech. 257, 111 (1993)

    Article  CAS  Google Scholar 

  28. P. Garstecki, H.A. Stone, G.M. Whitesides, Phys. Rev. Lett. 94(16), 164501 (2005)

    Article  Google Scholar 

  29. P.C. Lewis, R.R. Graham, Z. Nie, S. Xu, M. Seo, E. Kumacheva, Macromolecules 38(10), 4536–4538 (2005)

    Article  CAS  Google Scholar 

  30. T. Nisisako, T. Torii, T. Higuchi, Lab Chip 2(1), 24–26 (2002)

    Article  CAS  Google Scholar 

  31. C. Amine, A. Boire, A. Kermarrec, D. Renard, Food Hydrocoll. 92, 94–103 (2019)

    Article  CAS  Google Scholar 

  32. J.T.G. Overbeek, M. Voorn, J. Cell. Physiol. 49(S1), 7–26 (1957)

    Article  CAS  Google Scholar 

  33. A. Veis, C. Aranyi, J. Phys, Chem. 64, 1203–1210 (1960)

    CAS  Google Scholar 

  34. A. Nakajima, H. Sato, Biopolymers 11(7), 1345–1355 (1972)

    Article  CAS  Google Scholar 

  35. K.I. Tainaka, Biopolymers 19(7), 1289–1298 (1980)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with the financial support of the French National Research Institute for Agriculture, Food and Environment (INRAE) and the Region Pays de la Loire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeline Boire.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amine, C., Boire, A., Davy, J. et al. Optimization of a Droplet-Based Millifluidic Device to Investigate the Phase Behavior of Biopolymers, Including Viscous Conditions. Food Biophysics 15, 463–472 (2020). https://doi.org/10.1007/s11483-020-09645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-020-09645-9

Keywords

Navigation