Skip to main content
Log in

Celsist Subchannel Module Aided Simulation of Liquid-Metal Coolant Flow in Experimental FA

  • Published:
Atomic Energy Aims and scope

The CELSIST subchannel module is described. The results of the simulation of experiments on the flow of liquid metal coolant in model FA are presented: lead-bismuth eutectic alloy in a 19-rod FA on the THEADES stand (Karlsruhe Liquid Metal Laboratory, Germany), sodium in a 19-rod FA on the Bundle 2A FFM stand (ORNL, USA), sodium-potassium eutectic alloy in a 37-rod FA on the 6B stand (IPPE, Russia), sodium in a 37-rod FA with partial blockage of the flow section (Oarai Research Center, Japan). The computed temperature of the coolant and the cladding of fuel-rod simulators are compared with the experimental temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Mosunova, “Integrated code EUKLID/V1 for safety validation of fast neutron reactors with liquid metal coolant. Part 1. Basic models,” Teploenergetika, No. 5, 69–84 (2018).

  2. J. Fricano, Integrated Fuel Performance and Thermal-Hydraulic Subchannel Models for Analysis of Sodium Fast Reactors: Ph.D. Thesis, MIT, USA (2012).

  3. X. Liu and N. Scarpelli, “Development of a sub-channel code for liquid metal cooled fuel assembly,” Ann. Nucl. Energy, No. 77, 425–435 (2015).

    Article  Google Scholar 

  4. W. Kim, Y. Kim, and Y. Kim, “A subchannel analysis code MATRA-LMR for wire wrapped LMR subassembly,” Ann. Nucl. Energy, No. 29, 303–321 (2001).

    Article  Google Scholar 

  5. F. Lodi, G. Grasso, D. Mattioli, and M. Sumini, “ANTEO+: a subchannel code for thermal-hydraulic analysis of liquid metal cooled systems,” Nucl. Eng. Des., 301, 128–152 (2016).

    Article  Google Scholar 

  6. G. P. Bogoslovskaya, P. L. Kirillov, and A. P. Sorokin, “MIF code for thermohydraulic calculation of the core of a reactor cooled by water at supercritical pressure,” Teploenergetika, No. 3, 34–37 (2009).

    Google Scholar 

  7. I. A. Kuznetsov and V. M. Poplavskii, Safety of NPP with Fast Neutron Reactors, IzdAT, Moscow (2012).

    Google Scholar 

  8. S. Yu. Afonin, M. V. Papandin, V. P. Smirnov, and A. V. Tutukin, “Nonstationary thermohydraulic code – UNSCELM,” At. Energ., 112, No. 5, 260–263 (2012); Atomic Energy, 112, No. 5, 318–322 (2012).

  9. P. L. Kirillov, V. P. Bobkov, A. V. Zhukov, and Yu. S. Yuryev, Handbook of Thermohydraulic Calculations, Vol. 1, Thermohydraulic Processes in Nuclear Power Plants, IzdAT, Moscow (2010).

    Google Scholar 

  10. A. V. Zhukov, Yu. A. Kuzina, A. P. Sorokin, et al., “Experimental study on models of heat transfer in the core of the BREST-OD-300 reactor with lead cooling,” Teploenergetika, No. 3, 2–10 (2002).

    Google Scholar 

  11. V. I. Subbotin, M. Kh. Ibragimov, P. A. Ushakov, et al., Hydrodynamics and Heat Transfer in Nuclear Power Plants: Computational Fundamentals, Atomizdat, Moscow (1975).

    Google Scholar 

  12. A. V. Zhukov, A. P. Sorokin, P. A. Titov, et al., “Analysis of the hydraulic resistance of fuel-pin bundles of fast reactors,” At. Energ., 60, No. 5, 317–321 (1986).

    Article  Google Scholar 

  13. A. D. Altshul, L. S. Zhivotovskii, and L. P. Ivanov, Hydraulics and Aerodynamics, Stroyizdat, Moscow (1987).

    Google Scholar 

  14. V. I. Subbotin, B. N. Gabrianovich, and A. V. Sheinina, “Hydraulic resistance during longitudinal flow around smooth and ribbed bundles of rods,” At. Energ., 33, No. 5, 889–892 (1972).

    Article  Google Scholar 

  15. A. V. Zhukov, A. P. Sorokin, and P. L. Kirillov, et al., Guidelines and Recommendations for Thermohydraulic Calculation of the Core of Fast Reactors, RTM 1604.008, GKIAE, IPPE (1988).

  16. A. V. Zhukov, A. P. Sorokin, and N. M. Matyukhin, Interchannel Exchange in Fuel Assemblies of Fast Reactors, Energoatomizdat, Moscow (1989).

    Google Scholar 

  17. J. Pacio, M. Daubner, F. Fellmoser, et al., “Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers,” Nucl. Eng. Des., No. 301, 111–127 (2016).

    Article  Google Scholar 

  18. M. Fontana, R. MacPherson, P. Gnadt, et al., Temperature Distribution in a 19-Rod Simulated LMFBR Fuel Assembly in a Hexagonal Duct (Fuel Failure Mockup Bundle 2A). Record of Experimental Data, ORNL (1973).

    Google Scholar 

  19. M. Fontana, R. MacPherson, P. Gnadt, et al., “Temperature distribution in the duct wall and at the exit of a 19-rod simulated LMFBR fuel assembly (FFM Budle 2A),” Nucl. Techn., No. 24, 176–200 (1974).

    Article  Google Scholar 

  20. Yu. A. Kuzina, V. V. Privezentsev, A. P. Sorokin, et al., “Investigation of temperature fields and fields of heat emission in model FA of a rector with heavy coolant (uniform geometry),” Vopr. At. Nauki Tekhn. Ser. Yad.-Reakt. Konst., No. 4, 15–23 (2017).

    Google Scholar 

  21. Y. Kikuchi, T. Ogino, Y. Ozaki, et al., “Temperature, flow and acoustic noises in a locally blocked 37-pin bundle,” in: 7th Liquid Metal Boiling Working Group Meeting, Petten (1977).

  22. M. Uotani, K. Haga, Y. Kikuchi, et al., “Local flow blockage experiments in 37-pin sodium cooled bundles with grid spacers,” in: 8th Liquid Metal Boiling Working Group Meeting, Mol, Belgium (1978).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Vlasenko.

Additional information

Translated from Atomnaya Énergiya, Vol. 128, No. 2, pp. 68–73, February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlova, E.E., Smirnov, V.P., Vlasenko, A.E. et al. Celsist Subchannel Module Aided Simulation of Liquid-Metal Coolant Flow in Experimental FA. At Energy 128, 71–77 (2020). https://doi.org/10.1007/s10512-020-00653-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-020-00653-z

Navigation