Skip to main content
Log in

A Passive Islanding Detection Algorithm Based on Modal Current and Adaptive Boosting

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An effective and timely detection of islanding is a task of paramount importance to nullify the potential threat to field personnel and equipment damage. A passive islanding detection method based on modal current and adaptive boosting is proposed in the present work. The three-phase currents of the target distributed generation unit are converted into modal signals reducing the dataset. These modal currents are subsequently decomposed into mono-frequency components by employing empirical mode decomposition tool. The authentic mono-frequency components identified using correlation are transformed with the help of Hilbert transform. Various features like entropy, skewness, power, kurtosis, signal-to-noise ratio, and total harmonic distortion are obtained from Hilbert transform. Subsequently, these features act as the input for the adaptive boosting technique to categorize islanding and non-islanding classes. The results obtained explicitly demonstrate that the proposed methodology is highly accurate with reduced non-detection zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\( _{{I_{r} }} \) :

Current in r phase

\( _{{I_{y} }} \) :

Current in y phase

\( _{{I_{b} }} \) :

Current in b phase

\( A \) :

Modal coefficient corresponding to phase r

\( B \) :

Modal coefficient corresponding to phase y

\( C \) :

Modal coefficient corresponding to phase b

\( h(t) \) :

Cauchy’s integral

\( f(t) \) :

Orthogonal component (HT) of sample signal

\( s(t) \) :

Sample signal

\( * \) :

Convolution operator

\( y(t) \) :

Analytical function

\( x(t) \) :

Amplitude of analytical signal

\( _{{V_{i} }} \) :

Correlation coefficient

\( E \) :

Original signal

\( F \) :

IMFs obtained from original signal

\( N \) :

Total count of samples

\( k \) :

No. of IMFs

\( \bar{E} \) :

Mean value of \( E \)

\( \bar{F} \) :

Mean value of \( F \)

\( \sigma_{E} \) :

Standard deviation of \( E \)

\( \sigma_{F} \) :

Standard deviation of \( F \)

\( _{\zeta } \) :

Highest ratio factor

\( {\text{NI}}_{\text{True}} \) :

Non-islanding cases classified as non-islanding

\( {\text{NI}}_{\text{False}} \) :

Non-islanding cases misclassified as islanding

\( I_{\text{True}} \) :

Islanding cases correctly classified as islanding

\( I_{\text{False}} \) :

Islanding cases misclassified as non-islanding

DG:

Distributed generation unit

DS:

Distribution system

PQ:

Power quality

CB:

Circuit breaker

NDZ:

Non detection zone

IDM:

Islanding detection methodology

AFD:

Active frequency drift

SMS:

Slip-mode frequency shift

SFS:

Sandia frequency shift

VS:

Voltage shift

ROCOV:

Rate of change of voltage

ROCOF:

Rate of change of voltage

UV:

Under-voltage

OV:

Over-voltage

UF:

Under-frequency

OF:

Over-frequency

AI:

Artificial intelligence

ML:

Machine learning

WT:

Wavelet transform

DT:

Decision tree

RBF:

Radial basis function

SVM:

Support vector machine

PNN:

Probabilistic neural network

IDF:

Islanding detection factor

Ada-Boost:

Adaptive boosting

SNR:

Signal-to-noise ratio

THD:

Total harmonic distortion

EMD:

Empirical mode decomposition

HT:

Hilbert transform

IMF:

Intrinsic mode function

MC:

Modal current

DFT:

Discrete Fourier transform

KNN:

K-nearest neighbor

LR:

Logistic regression

GNB:

Gaussian Naïve–Bayes

DWT:

Discrete wavelet transform

ANN:

Artificial neural network

References

  1. Palensky, P.; Dietrich, D.: Demand side management: demand response, intelligent energy systems, and smart loads. IEEE Trans. Ind. Inform. 7(3), 381–388 (2011)

    Article  Google Scholar 

  2. IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE Standard 1547-2003 (2003)

  3. Chowdhury, S.P.; Chowdhury, S.; Crossley, P.A.: Islanding protection of active distribution networks with renewable distributed generators: a comprehensive survey. Electr. Power Syst. Res. 79(6), 984–992 (2009)

    Article  Google Scholar 

  4. Khamis, A.; Shareef, H.; Bizkevelci, E.; Khatib, T.: A review of islanding detection techniques for renewable distributed generation systems. Renew. Sustain. Energy Rev. 28, 483–493 (2013)

    Article  Google Scholar 

  5. Ahmad, K.N.E.K.; Selvaraj, J.; Rahim, N.A.: A review of the islanding detection methods in grid-connected PV inverters. Renew. Sustain. Energy Rev. 21, 756–766 (2013)

    Article  Google Scholar 

  6. Dutta, S.; Sadhu, P.K.; Reddy, M.J.B.; Mohanta, D.K.: Shifting of research trends in islanding detection method—a comprehensive survey. Prot. Control Mod. Power Syst. 1(3), 1–20 (2018)

    Article  Google Scholar 

  7. Yafaoui, A.; Wu, B.; Kouro, S.: Improved active frequency drift anti-islanding detection method for grid connected photovoltaic systems. IEEE Trans. Power Electron. 27(5), 2367–2375 (2012)

    Article  Google Scholar 

  8. Zeineldin, H.H.; Kennedy, S.: Sandia frequency-shift parameter selection to eliminate non-detection zones. IEEE Trans. Power Deliv. 24(1), 486–487 (2009)

    Article  Google Scholar 

  9. Kang, F.L.Y.; Duan, Y.Z.S.: Improved SMS islanding detection method for grid-connected converters. IET Renew. Power Gener. 4(1), 36–42 (2010)

    Article  Google Scholar 

  10. Hatata, A.Y.; Sedhom, B.E.: Proposed Sandia frequency shift for anti-islanding detection method based on artificial immune system. Alex. Eng. J. 57(1), 235–245 (2018)

    Article  Google Scholar 

  11. Karimi, H.; Yazdani, A.; Iravani, R.: Negative-sequence current injection for fast islanding detection of a distributed resource unit. IEEE Trans. Power Electron. 23(1), 298–307 (2008)

    Article  Google Scholar 

  12. Freitas, W.; Xu, W.; Affonso, C.M.; Huang, Z.: Comparative analysis between ROCOF and vector surge relays for distributed generation applications. IEEE Trans. Power Deliv. 20(2), 1315–1324 (2005)

    Article  Google Scholar 

  13. Zeineldin, H.H.; Kirtley, J.L.: Performance of the OVP/UVP and OFP/UFP method with voltage and frequency dependent loads. IEEE Trans. Power Deliv. 24(2), 772–778 (2009)

    Article  Google Scholar 

  14. Jang, S.I.; Kim, K.H.: An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current. IEEE Trans. Power Deliv. 19(2), 745–752 (2004)

    Article  MathSciNet  Google Scholar 

  15. Pigazo, A.; Liserre, M.; Mastromauro, R.A.; et al.: Wavelet-based islanding detection in grid-connected PV systems. IEEE Trans. Ind. Electron. 56(11), 4445–4455 (2009)

    Article  Google Scholar 

  16. Karegar, H.K.; Sobhani, B.: Wavelet transform method for islanding detection of wind turbines. Renew. Energy 38(1), 94–106 (2012)

    Article  Google Scholar 

  17. Shabani, H.; Vahidi, B.; Naghizadeh, R.A.; Hosseinian, S.H.: Islanding detection in unbalanced distribution systems with doubly fed induction generator based distributed generation using wavelet transform. Electr. Power Compon. Syst. 43(8–10), 866–878 (2015)

    Article  Google Scholar 

  18. Raza, S.; Mokhlis, H.; Arof, H.; et al.: Application of signal processing techniques for islanding detection of distributed generation in distribution network: a review. Energy Convers. Manag. 96, 613–624 (2015)

    Article  Google Scholar 

  19. Do, H.T., Zhang, X., Nguyen, N.V., Li, S.S., Chu, T.T.: Passive-islanding detection method using the wavelet packet transform in grid-connected photovoltaic systems. IEEE Trans. Power Electron. 31(10), 6955–6967 (2015)

    Google Scholar 

  20. Gupta, N., Garg, R.: Algorithm for islanding detection in photovoltaic generator network connected to low-voltage grid. IET Gener. Transm. Distrib. 12(10), 2280–2287 (2018)

    Article  Google Scholar 

  21. Faqhruldin, O.N.; Zeineldin, H.H.: Evaluation of islanding detection techniques for inverter-based distributed generation. In: 2012 IEEE Power and Energy Society General Meeting, pp. 1–7 (2012)

  22. Matic-cuka, B.; Kezunovic, M.: Islanding detection for inverter-based distributed generation using support vector machine method. IEEE Trans. Smart Grid 5(6), 2676–2686 (2014)

    Article  Google Scholar 

  23. Abd-Elkader, A.G.; Saleh, S.M.; Eiteba, M.B.M.: A passive islanding detection strategy for multi-distributed generations. Electr. Power Energy Syst. 99, 146–155 (2018)

    Article  Google Scholar 

  24. Makwana, Y.M.; Bhalja, B.R.: Experimental performance of an islanding detection scheme based on modal components. IEEE Trans. Smart Grid 10(1), 1025–1035 (2019)

    Article  Google Scholar 

  25. Ghanbari, T.; Farjah, E.: A multiagent-based fault-current limiting scheme for the microgrids. IEEE Trans. Power Deliv. 29(2), 525–533 (2014)

    Article  Google Scholar 

  26. Ghanbari, T.: Autocorrelation function based technique for stator turn-fault detection of induction motor. IET Sci. Meas. Technol. 10(2), 1–11 (2016)

    Article  Google Scholar 

  27. Perera, N.; Rajapakse, A.D.; Buchholzer, T.E.: Isolation of faults in distribution networks with distributed generators. IEEE Trans. Power Deliv. 23(4), 2347–2355 (2008)

    Article  Google Scholar 

  28. Peng, Z.K.; Tse, P.W.; Chu, F.L.: A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing. Mech. Syst. Signal Process. 19(5), 974–988 (2005)

    Article  Google Scholar 

  29. Freund, Y.; Schapire, R.E.: A decision–theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fan, S.S.; Lin, S.; Tsai, P.: Wafer fault detection and key step identification for semiconductor manufacturing using principal component analysis, AdaBoost and decision tree. J. Ind. Prod. Eng. 33(3), 151–168 (2016)

    Google Scholar 

  31. SunPower: https://in.mathworks.com/help/physmod/sps/examples/250-kw-grid-connected-pv-array.html. Accessed 10 Aug 2019

  32. Alam, M.R.; Muttaqi, K.M.; Bouzerdoum, A.: A multifeature-based approach for islanding detection of DG in the subcritical region of vector surge relays. IEEE Trans. Power Deliv. 29(5), 2349–2358 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nimish Bhatt.

Appendix

Appendix

See Tables 6 and 7.

Table 6 Test system parameters
Table 7 Types of loads

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, N., Kumar, A. A Passive Islanding Detection Algorithm Based on Modal Current and Adaptive Boosting. Arab J Sci Eng 45, 6791–6801 (2020). https://doi.org/10.1007/s13369-020-04709-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04709-x

Keywords

Navigation