Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of Cu Matrix Composites Reinforced by TiB2/TiN Ceramic Reinforcements

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Cu matrix composites reinforced by TiB2/TiN ceramic reinforcements (Cu/TBN composites) were prepared by hot pressing method. Prior to the hot pressing, Cu/TiB2/TiN composite powders (CTBN powders), which were used as the starting materials of Cu/TBN composites, were fabricated by self-propagating high-temperature synthesis method. The CTBN particles were found to be in a special core–shell structure with a Cu–Ti alloy core and a TiB2/TiN ceramic shell. The test results presented obvious improvements in mechanical properties. The highest ultimate tensile strength reached up to 297 MPa, 77 MPa higher than that of Cu. And the highest hardness reached up to 70.7 HRF, 15.7 HRF higher than that of Cu. A comparative study indicated that the core–shell structured particles could bring about more obvious strengthening effect than the traditional irregularly shaped particles, which was due to the improved Cu/ceramics interfacial bonding, the linkage strengthening effect of both TiB2 and TiN, and higher load bearing ability of the core–shell structured reinforcements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Guo, K. Shen, M. Wang, Acta Mater. 57, 4568 (2009)

    Article  CAS  Google Scholar 

  2. S. Sharma, T. Nanda, O.P. Pandey, Ceram. Int. 44, 104 (2018)

    Article  CAS  Google Scholar 

  3. P. Zhang, J. Jie, H. Li, T. Wang, T. Li, J. Mater. Sci. 50, 3320 (2015)

    Article  CAS  Google Scholar 

  4. B.-W. Ahn, J.-H. Kim, K. Hamad, S.-B. Jung, J. Alloys Compd. 693, 688 (2017)

    Article  CAS  Google Scholar 

  5. A. Jha, S.J. Yoon, J. Mater. Sci. 34, 307 (1999)

    Article  CAS  Google Scholar 

  6. T. Aizawa, T. Akhadejdamrong, C. Iwamoto, Y. Ikuhara, A. Mitsuo, J. Am. Ceram. Soc. 85, 21 (2002)

    Article  CAS  Google Scholar 

  7. Y. Zhan, G. Zhang, J. Mater. Sci. 40, 223 (2005)

    Article  CAS  Google Scholar 

  8. D.M. Jarzabek, M. Milczarek, T. Wojciechowski, C. Dziekonski, M. Chmielewski, Ceram. Int. 43, 5283 (2017)

    Article  CAS  Google Scholar 

  9. J. Yin, D. Yao, Y. Xia, K. Zuo, Y. Zeng, J. Alloys Compd. 615, 983 (2014)

    Article  CAS  Google Scholar 

  10. C. Zhang, J. Yin, D. Yao, K. Zuo, Y. Xia, H. Liang, Y. Zeng, Compos. Part A Appl. Sci. Manuf. 102, 145 (2017)

    Article  CAS  Google Scholar 

  11. J. Li, F. Li, K. Hu, Y. Zhou, J. Alloys Compd. 334, 253 (2002)

    Article  CAS  Google Scholar 

  12. J.H. Shim, J.S. Byun, Y. Whan Cho, Scr. Mater. 47, 493 (2002)

    Article  CAS  Google Scholar 

  13. M. Kitiwan, A. Ito, T. Goto, J. Eur. Ceram. Soc. 34, 197 (2014)

    Article  CAS  Google Scholar 

  14. C.L. Yeh, C.H. Chiang, Ceram. Int. 41, 11287 (2015)

    Article  CAS  Google Scholar 

  15. B. Chen, Q. Bi, J. Yang, Y. Xia, J. Hao, Mater. Sci. Eng. A 491, 315 (2008)

    Article  Google Scholar 

  16. G.J. Zhang, Z.Z. Jin, X.M. Yue, J. Am. Ceram. Soc. 78, 2831 (1995)

    Article  CAS  Google Scholar 

  17. Y.F. Yang, H.Y. Wang, Y.H. Liang, R.Y. Zhao, Q.C. Jiang, Mater. Sci. Eng. A 445–446, 398 (2007)

    Article  Google Scholar 

  18. Z. Xinghong, Z. Chuncheng, Q. Wei, H. Xiaodong, V.L. Kvanin, Compos. Sci. Technol. 62, 2037 (2002)

    Article  Google Scholar 

  19. S. Cho, K. Kikuchi, T. Miyazaki, K. Takagi, A. Kawasaki, T. Tsukada, Scr. Mater. 63, 375 (2010)

    Article  CAS  Google Scholar 

  20. Y. Zhang, H.L. Zhang, J.H. Wu, X.T. Wang, Scr. Mater. 65, 1097 (2011)

    Article  CAS  Google Scholar 

  21. Y.A. Lu, J.F. Yang, W.Z. Lu, R.Z. Liu, G.J. Qiao, C.G. Bao, Mater. Sci. Eng. A 527, 6289 (2010)

    Article  Google Scholar 

  22. J.N. Wei, Z.B. Li, F.S. Han, Phys. Status Solidi A 191, 125 (2002)

    Article  CAS  Google Scholar 

  23. W.D. Fei, M. Hu, C.K. Yao, Mater. Chem. Phys. 77, 882 (2003)

    Article  CAS  Google Scholar 

  24. N. Chawla, Y.L. Shen, Adv. Eng. Mater. 3, 357 (2001)

    Article  CAS  Google Scholar 

  25. N. Xu, Y.P. Zong, F.Z. Hang, L. Zuo, Acta Metall. Sin. (in Chinese) 43, 863 (2007)

    CAS  Google Scholar 

  26. S.V. Kamat, A.D. Rollett, J.P. Hirth, Scr. Metall. Mater. 25, 27 (1991)

    Article  CAS  Google Scholar 

  27. M.T. Kiser, F.W. Zok, D.S. Wilkinson, Acta Mater. 44, 3465 (1996)

    Article  CAS  Google Scholar 

  28. P. Jin, X.B. Lv, Q.Z. Wang, Z.Y. Ma, Y. Liu, S. Li, Acta Metall. Sin. (in Chinese) 47, 298 (2011)

    CAS  Google Scholar 

  29. Q.K. Cai, C.L. He, M.J. Zhao, J. Bi, C.S. Liu, Acta Metall. Sin. (in Chinese) 39, 865 (2003)

    CAS  Google Scholar 

  30. Y. Flom, R.J. Arsenault, Acta Metall. 37, 2413 (1989)

    Article  CAS  Google Scholar 

  31. L. Cao, C.P. Jiang, Z.K. Yao, T.Q. Lei, Acta Metall. Sin. (in Chinese) 25, 113 (1989)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFF01013605), the National Natural Science Foundation of China (No. 51501215), the Youth Innovation Promotion Association CAS (No. 2019254), the Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures (No. SKL201701), the State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (No. KF201806).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuPing Zeng.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Zhou, P., Liang, H. et al. Microstructure and Mechanical Properties of Cu Matrix Composites Reinforced by TiB2/TiN Ceramic Reinforcements. Acta Metall. Sin. (Engl. Lett.) 33, 1609–1617 (2020). https://doi.org/10.1007/s40195-020-01100-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01100-5

Keywords

Navigation