Skip to main content
Log in

An Extended Dielectric Crack Model for Fracture Analysis of a Thermopiezoelectric Strip

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

An extended dielectric crack model is proposed to capture the effects of the physical properties of crack interior on crack-tip thermoelectroelastic fields. The typical crack-face boundary conditions can be retrieved by considering the limiting cases of electrical permeability and thermal conductivity inside a crack. Making use of the Fourier transform technique, the problem of a thermopiezoelectric strip weakened by a Griffith crack is investigated and transformed to solve the system of the second kind Fredholm integral equations with Cauchy kernel. The Lobatto–Chebyshev collocation method is used to form a nonlinear system of algebraic equations, which is solved by elaborating on an algorithm. The crack-tip thermoelectroelastic fields are determined by using the approximate solutions. Numerical simulations are carried out to show the variations of the fracture parameters of concern under applied thermoelectromechanical loads, the physical properties of the dielectric medium inside the crack and the geometry of the cracked thermopiezoelectric strip. Some comparisons with the experimental results are reported to reveal the effectiveness of the extended dielectric crack model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang JS. An introduction to the theory of piezoelectricity. New York: Springer; 2005.

    MATH  Google Scholar 

  2. Zhang LX, Chen J, Fan LL, et al. Giant polarization in super-tetragonal thin films through interphase strain. Science. 2018;361:494–7.

    Google Scholar 

  3. Yang W. Mechatronic reliability. Beijing: Tsinghua University Press; 2001.

    Google Scholar 

  4. Fang DN, Liu JX. Fracture mechanics of piezoelectric and ferroelectric solids. Beijing: Tsinghua University Press; 2008.

    MATH  Google Scholar 

  5. Qin QH. Fracture mechanics of piezoelectric materials. Southampton: WIT Press; 2001.

    Google Scholar 

  6. Gao H, Zhang TY, Tong P. Local and global energy release rate for an electrically yielded crack in a piezoelectric ceramic. J Mech Phys Solids. 1997;45:491–510.

    Google Scholar 

  7. Zhang TY, Zhao MH, Gao CF. The strip dielectric breakdown model. Int J Eng Sci. 2005;132:311–27.

    MATH  Google Scholar 

  8. Zhu T, Yang W. Toughness variation of ferroelectrics by polarization switch under non-uniform electric field. Acta Mater. 1997;45:4695–702.

    Google Scholar 

  9. Hao TH, Shen ZY. A new electric boundary condition of electric fracture mechanics and its application. Eng Fract Mech. 1994;47:793–802.

    Google Scholar 

  10. Landis CM. Energetically consistent boundary conditions for electromechanical fracture. Int J Solids Struct. 2004;41:6291–315.

    MATH  Google Scholar 

  11. Ricoeur A, Kuna M. Electrostatic tractions at crack faces and their influence on the fracture mechanics of piezoelectrics. Int J Fract. 2009;157:3–12.

    MATH  Google Scholar 

  12. Ricoeur A, Kuna M. Electrostatic tractions at dielectric interfaces and their implication for crack boundary conditions. Mech Res Commun. 2009;36:330–5.

    MATH  Google Scholar 

  13. Park S, Sun CT. Fracture criteria for piezoelectric ceramics. J Am Ceram Soc. 1995;78:1475–80.

    Google Scholar 

  14. Wang H, Singh RN. Crack propagation in piezoelectric ceramics: effects of applied electric fields. J Appl Phys. 1997;81:7471–9.

    Google Scholar 

  15. Fu R, Zhang TY. Effect of an applied electric field on the fracture toughness of lead zirconate titanate ceramics. J Am Ceram Soc. 2000;83:1215–8.

    Google Scholar 

  16. Shindo Y, Narita F, Horiguchi K, et al. Electric fracture and polarization switching properties of piezoelectric ceramic PZT studied by the modified small punch test. Acta Mater. 2003;51:4773–82.

    Google Scholar 

  17. Mindlin RD. On the equations of motion of piezoelectric crystals. In: Radok J, editor. Problems of continuum mechanics. Philadelphia: SIAM; 1961. p. 282–90.

    Google Scholar 

  18. Nowacki W. Some general theorems of thermo-piezoelectricity. J Therm Stresses. 1978;1:171–82.

    Google Scholar 

  19. Zhou YT, Lee KY. Thermo-electro-mechanical contact behavior of a finite piezoelectric layer under a sliding punch with frictional heat generation. J Mech Phys Solids. 2011;59:1037–61.

    MATH  MathSciNet  Google Scholar 

  20. Yang JH, Zhou T. Bifurcation and chaos of piezoelectric shell reinforced with BNNTs under electro-thermo-mechanical loadings. Acta Mech Solida Sin. 2019;32(1):120–32.

    Google Scholar 

  21. Yu SW, Qin QH. Damage analysis of thermopiezoelectric properties: part I—crack tip singularities. Theor Appl Fract Mech. 1996;25:263–77.

    Google Scholar 

  22. Shen SP, Kuang ZB. Interface crack in bi-piezothermoelastic media and the interaction with a point heat source. Int J Solids Struct. 1998;35:3899–915.

    MATH  Google Scholar 

  23. Chen WQ. On the general solution for piezothermoelasticity for transverse isotropy with application. ASME J Appl Mech. 2000;67:705–11.

    MATH  MathSciNet  Google Scholar 

  24. Ding HJ, Guo FL, Hou PF. A general solution for piezothermoelasticity of transversely isotropic piezoelectric materials and its applications. Int J Eng Sci. 2000;38:1415–40.

    MATH  Google Scholar 

  25. Gao CF, Wang MZ. Collinear permeable cracks in thermopiezoelectric materials. Mech Mater. 2001;33:1–9.

    Google Scholar 

  26. Ueda S. The crack problem in piezoelectric strip under thermoelectric loading. J Therm Stresses. 2006;29:295–316.

    Google Scholar 

  27. Wang BL, Sun YG, Zhu Y. Fracture of a finite piezoelectric layer with a penny-shaped crack. Int J Fract. 2011;172:19–39.

    MATH  Google Scholar 

  28. Ishihara M, Noda N. Control of thermal stress intensity factor in a piezothermoelastic semi-infinite body with an edge crack. Eur J Mech A/Solids. 2005;24:417–26.

    MATH  Google Scholar 

  29. Wang BL, Mai YW. A cracked piezoelectric material strip under transient thermal loading. ASME J Appl Mech. 2002;69:539–46.

    MATH  Google Scholar 

  30. Zhao MH, Yang CH, Fan CY, Xu GT. Extended displacement discontinuity method for analysis of penny-shaped cracks in three-dimensional thermal piezoelectric semiconductors. Eur J Mech A/Solids. 2018;70:23–36.

    MATH  MathSciNet  Google Scholar 

  31. Bermejo R, Grünbichler H, Kreith J, Auer C. Fracture resistance of a doped PZT ceramic for multilayer piezoelectric actuators: effect of mechanical load and temperature. J Eur Ceram Soc. 2010;30:705–12.

    Google Scholar 

  32. Zhong XC, Zhang KS. An opening crack model for thermopiezoelectric solids. Eur J Mech A/Solids. 2013;41:101–10.

    MATH  MathSciNet  Google Scholar 

  33. Zhang AB, Wang BL. Applicability of the crack faces thermoelectric boundary conditions for thermopiezoelectric materials. Mech Res Commun. 2013;52:19–24.

    Google Scholar 

  34. Zhong XC, Lee KY. A thermal-medium crack model. Mech Mater. 2012;51:110–7.

    Google Scholar 

  35. Zhong XC, Long XY, Zhang LH. An extended thermal-medium crack model. Appl Math Model. 2018;58:202–16.

    MATH  MathSciNet  Google Scholar 

  36. Schneider GA, Felten F, McMeeking RM. The electrical potential difference across cracks in PZT measured by Kelvin Probe Microscopy and implications for fracture. Acta Mater. 2003;51:2235–41.

    Google Scholar 

  37. Zhong XC, Lee KY. A dielectric crack in a functionally graded piezoelectric layer. Eur J Mech /A Solids. 2011;30:761–9.

    MATH  MathSciNet  Google Scholar 

  38. Mindlin RD. Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int J Solds Struct. 1974;10:625–37.

    MATH  Google Scholar 

  39. Hu KQ. Comments on “Fracture analysis of a piezoelectric layer with a penny-shaped and energetically consistent crack” by Xian-Ci Zhong. Acta Mech. 2013;224:459–60.

    MATH  MathSciNet  Google Scholar 

  40. Li XF, Duan XY. Closed-form solution for a mode-III crack at the mid-plane of a piezoelectric layer. Mech Res Commun. 2001;28:703–10.

    MATH  Google Scholar 

  41. Singh BM, Moodie TB, Haddow JW. Closed-form solutions for finite length crack moving in a strip under anti-plane shear stress. Acta Mech. 1981;38:99–109.

    MATH  MathSciNet  Google Scholar 

  42. Hutchinson JW, Suo Z. Mixed mode cracking in layered materials. Adv Appl Mech. 1992;29:63–191.

    MATH  Google Scholar 

  43. Itou S. Thermal stress intensity factors of an infinite orthotropic layer with a crack. Int J Fract. 2000;103:279–91.

    Google Scholar 

  44. Zhong XC. Analysis of a dielectric crack in a magnetoelectroelastic layer. Int J Solids Struct. 2009;46:4221–30.

    MATH  Google Scholar 

  45. Li XF, Lee KY. Effect of heat conduction of penny-shaped crack interior on thermal stress intensity factors. Int J Heat Mass Transf. 2015;91:127–34.

    Google Scholar 

  46. Wang BL, Mai YW. A piezoelectric material strip with a crack perpendicular to its boundary surfaces. Int J Solids Struct. 2002;39:4501–24.

    MATH  Google Scholar 

  47. Li XF, Lee KY. Fracture analysis of cracked piezoelectric materials. Int J Solids Struct. 2004;41:4137–61.

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions for improving the paper. The work was supported by the National Natural Science Foundation of China (Nos. 11872155 and 11362002), the Guangxi Natural Science Foundation (No. 2016GXNSFAA380261) and the innovation project of Guangxi Graduate Education (YCSW2019045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianci Zhong.

Appendices

Appendix A

(I) The derivation process of Eq. (29) is given as follows: Using the Fourier transform technique, we express the solution of Eq. (15) as

$$\begin{aligned} \theta ^{j}(x,z)=\int _0^\infty {A^{j} (\xi )\frac{\cosh [-\lambda (\delta ^{j}z-h_{j} )\xi ]}{\sinh (\lambda \xi h_{j} )}\cos (\xi x)} \text{ d }\xi +A_{0} z \end{aligned}$$
(A.1)

where \(A_{i}^{j} (\xi )(j=\mathrm{I},\mathrm{I}\mathrm{I})\) are the unknowns to be solved, \(\delta ^{\mathrm{I}}=1\) and \(\delta ^{\mathrm{I}\mathrm{I}}=-1\). Then, from Eqs. (14) and (A.1), the components of the heat flow \(q_{x}^{j} (x,z)\) and \(q_{z}^{j} (x,z)\) can be calculated as

$$\begin{aligned} q_{x}^{j} (x,z)= & {} \lambda _{x} \int _0^\infty {\xi A^{j} (\xi )\frac{\cosh [-\lambda (\delta ^{j}z-h_{j} )\xi ]}{\sinh (\lambda \xi h_{j} )}\sin (\xi x)} \text{ d }\xi \end{aligned}$$
(A.2)
$$\begin{aligned} q_{z}^{j} (x,z)= & {} \lambda _{z} \int _0^\infty {\delta ^{j}\xi A^{j} (\xi )\frac{\sinh [-\lambda (\delta ^{j}z-h_{j} )\xi ]}{\sinh (\lambda \xi h_{j} )}\cos (\xi x)} \text{ d }\xi -A_{0} \lambda _{z} \end{aligned}$$
(A.3)

Equation (18) and the second relation in Eq. (27) lead to

$$\begin{aligned} A^{\mathrm{I}}(\xi )=-A^{\mathrm{I}\mathrm{I}}(\xi ) \end{aligned}$$
(A.4)

According to Eq. (18), the first relation in Eqs. (27) and (A.4), we obtain the following dual integral equations

$$\begin{aligned} \int _0^\infty {A^{\mathrm{I}}(\xi )[\coth (\lambda h_{\mathrm{I}} \xi )+\coth (\lambda h_{\mathrm{I}\mathrm{I}} \xi )]} \cos (\xi x)\text{ d }\xi =0 \quad (\vert x\vert >a) \end{aligned}$$
(A.5)
$$\begin{aligned} \int _0^\infty {A^{\mathrm{I}}(\xi )} \xi \cos (\xi x)\text{ d }\xi =-\frac{q_{0} -q_{c} }{\lambda _{z} \lambda } \quad (\vert x\vert <a) \end{aligned}$$
(A.6)

The application of Eq. (28) yields

$$\begin{aligned} A^{\mathrm{I}}(\xi )=-\frac{{1}}{\pi }\frac{1}{\xi [\coth (\lambda h_{\mathrm{I}} \xi )+\coth (\lambda h_{\mathrm{I}\mathrm{I}} \xi )]}\int _{-a}^a {g(s)} \sin (\xi s)\text{ d }s \end{aligned}$$
(A.7)

Substituting Eq. (A.7) in Eq. (A.6), one arrives at Eq. (29).

(II) For convenience, the derivation procedure of Eq. (32) is given as follows:

$$\begin{aligned} 2\int _0^\infty {\sin (\xi s)} \cos (\xi x)\text{ d }\xi= & {} \frac{\partial }{\partial x}\int _0^\infty {\frac{2\sin (\xi s)\sin (\xi x)}{\xi }} \text{ d }\xi \\= & {} \frac{\partial }{\partial x}\int _0^\infty {\frac{\cos [(x-s)\xi ]-\cos [(x+s)\xi ]}{\xi }} \text{ d }\xi \\= & {} \frac{\partial }{\partial x}\left\{ {\lim \limits _{\delta \rightarrow 0} \left[ {\int _\delta ^\infty {\frac{\cos [\vert x-s\vert \xi ]}{\xi }} \text{ d }\xi -\int _\delta ^\infty {\frac{\cos [\vert x+s\vert \xi ]}{\xi }} \text{ d }\xi } \right] } \right\} \\= & {} \frac{\partial }{\partial x}\left[ {\lim \limits _{\delta \rightarrow 0} \left( {\int _{\vert x-s\vert \delta }^\infty {\frac{\cos t}{t}} \text{ d }t-\int _{\vert x+s\vert \delta }^\infty {\frac{\cos t}{t}} \text{ d }t} \right) } \right] \\= & {} \frac{\partial }{\partial x}\left( {\lim \limits _{\delta \rightarrow 0} \int _{\vert x-s\vert \delta }^{\vert x+s\vert \delta } {\frac{\cos t}{t}} \text{ d }t} \right) \text{= }\frac{\partial }{\partial x} \left( {\lim \limits _{\delta \rightarrow 0,\eta \rightarrow {0}} \cos \eta \cdot \int _{\vert x-s\vert \delta }^{\vert x+s\vert \delta } {\frac{\text{ d }t}{t}} } \right) \\= & {} \frac{\partial }{\partial x}\left( {\ln \left| {\frac{x+s}{x-s}} \right| } \right) =\frac{1}{s-x}+\frac{1}{s+x} \end{aligned}$$

(III) The detailed process of deriving Eqs. (64)–(66) is shown as follows: By considering the boundary condition of Eq. (25), it is suitable to give the component of electric field \(E_{z}^{j} (x,z)\) as

$$\begin{aligned} E_{z}^{j} (x,z)= & {} \sum \limits _{i=1}^3 {\int _0^\infty {\eta _{4i} \alpha _{i} ^{2}\xi [A_{i}^{j} (\xi )} } \cosh (-\delta ^{j}\alpha _{i} z\xi )\nonumber \\&+\,B_{i}^{j} (\xi )\sinh (-\delta ^{j}\alpha _{i} z\xi )]\cos (\xi x)\text{ d }\xi -C_{2} \end{aligned}$$
(A.8)

Then, it follows that \(C_{2} =-E_{0} \) and

$$\begin{aligned} \sum \limits _{i=1}^3 {\eta _{4i} \alpha _{i}^{2}[A_{i}^{j} (\xi )} \cosh (-\alpha _{i} h_{j} \xi )+B_{i}^{j} (\xi )\sinh (-\alpha _{i} h_{j} \xi )]=0 \end{aligned}$$
(A.9)

Moreover, it is seen that the application of Eqs. (24) and (26) cannot determine the solutions of \(C_{0} \) and \(C_{1} \). Here, we still follow [46] to obtain the component of electric displacement as

$$\begin{aligned} D_{0} =\frac{c_{11} e_{33} -c_{13} e_{31} }{c_{11} c_{33} -c_{13}^{2} }\sigma _{0} +\left( {\frac{c_{33} e_{31}^{2} +c_{11} e_{33}^{2} -2c_{13} e_{33} e_{31} }{c_{11} c_{33} -c_{13}^{2} }+\varepsilon _{33} } \right) E_{0} \end{aligned}$$

which is in accordance with the finding for an infinite piezoelectric material [47]. According to Eq. (24), we have

$$\begin{aligned} \sum \limits _{i=1}^3 {\gamma _{1i} } [A_{i}^{j} (\xi )\cosh (-\alpha _{i} h_{j} \xi )+B_{i}^{j} (\xi )\sinh (-\alpha _{i} h_{j} \xi )]=0 \end{aligned}$$
(A.10)

In terms of (26) and (61), it gives

$$\begin{aligned} \sum \limits _{i=1}^3 {\gamma _{0i} } [A_{i}^{j} (\xi )\cosh (-\alpha _{i} h_{j} \xi )+B_{i}^{j} (\xi )\sinh (-\alpha _{i} h_{j} \xi )]=0 \end{aligned}$$
(A.11)

Moreover, we consider the boundary conditions at the crack plane, i.e., Eqs. (16), (17), (19) and (49)–(51), and obtain the following relations:

$$\begin{aligned} \sum \limits _{i=1}^3 {\gamma _{1i} } [A_{i}^{\mathrm{I}} (\xi )-A_{i}^{\mathrm{I}\mathrm{I}} (\xi )]=0 \end{aligned}$$
(A.12)
$$\begin{aligned} \sum \limits _{i=1}^3 {\gamma _{2i} } [A_{i}^{\mathrm{I}} (\xi )-A_{i}^{\mathrm{I}\mathrm{I}} (\xi )]=0 \end{aligned}$$
(A.13)
$$\begin{aligned} \sum \limits _{i=1}^3 {\gamma _{3i} } [A_{i}^{\mathrm{I}} (\xi )-A_{i}^{\mathrm{I}\mathrm{I}} (\xi )]=0. \end{aligned}$$
(A.14)

It follows that

$$\begin{aligned}&\sum \limits _{i=1}^3 {[A_{i}^{\mathrm{I}} (\xi )-A_{i}^{\mathrm{I}\mathrm{I}} (\xi )]} =\frac{2}{\pi \xi }\int _0^a {\Phi _{1} (s)} \cos (\xi s)\text{ d }s \end{aligned}$$
(A.15)
$$\begin{aligned}&\sum \limits _{i=1}^3 {\eta _{3i} \alpha _{i} [B_{i}^{\mathrm{I}} (\xi )+B_{i}^{\mathrm{I}\mathrm{I}} (\xi )]} =-\frac{2}{\pi \xi }\int _0^a {\Phi _{2} (s)} \sin (\xi s)\text{ d }s \end{aligned}$$
(A.16)
$$\begin{aligned}&\sum \limits _{i=1}^3 {\eta _{4i} \alpha _{i} [B_{i}^{\mathrm{I}} (\xi )+B_{i}^{\mathrm{I}\mathrm{I}} (\xi )]} =-\frac{2}{\pi \xi }\int _0^a {\Phi _{3} (s)} \sin (\xi s)\text{ d }s \end{aligned}$$
(A.17)

where the Fourier inverse transform and the conditions of Eqs. (49)–(51) have been used. With the knowledge of Eqs. (A.10)–(A.14) and (A.15)–(A.17), the unknowns \(A_{i}^{j} (\xi )\) and \(B_{i}^{j} (\xi )\) can be computed as follows:

$$\begin{aligned} \Pi =[b_{ij} (\xi )]_{12\times 12} \left\{ {{\begin{array}{c} {\frac{2}{\pi \xi }\int _0^a {\Phi _{1} (s)} \cos (\xi s)\text{ d }s} \\ {-\frac{2}{\pi \xi }\int _0^a {\Phi _{2} (s)} \sin (\xi s)\text{ d }s} \\ {-\frac{2}{\pi \xi }\int _0^a {\Phi _{3} (s)} \sin (\xi s)\text{ d }s} \\ 0 \\ \vdots \\ 0 \\ \end{array} }} \right\} \end{aligned}$$
(A.18)

where

$$\begin{aligned} \Pi =\left\{ {A_{1}^{\mathrm{I}} (\xi )} \;\; {A_{2}^{\mathrm{I}} (\xi )} \;\; \cdots \;\; {A_{3}^{\mathrm{I}\mathrm{I}} (\xi )} \;\; {B_{1}^{\mathrm{I}} (\xi )} \;\; {B_{2}^{\mathrm{I}} (\xi )} \;\; \cdots \;\; {B_{3}^{\mathrm{I}\mathrm{I}} (\xi )} \right\} ^{\mathrm{T}}. \end{aligned}$$

Since it is easy to obtain the coefficient matrix \([b_{ij} (\xi )]_{12\times 12} \), the detailed expression has been omitted here.

In addition, the application of Eqs. (16), (17), (19) and (62) leads to

$$\begin{aligned}&\frac{2}{\pi }\sum \limits _{i=1}^3 {\gamma _{1i} \left[ {\int _0^a {\Phi _{1} (s)} \text{ d }s\int _0^\infty {b_{i1} (\xi )\cos (\xi s)\cos (\xi x)} \text{ d }\xi } \right. }\nonumber \\&\quad \left. -\,\sum \limits _{j=2}^3 {\int _0^a {\Phi _{j} (s)} \text{ d }s\int _0^\infty {b_{ij} (\xi )} \sin (\xi s)\cos (\xi x)\text{ d }\xi } \right] =-\sigma _{0} \end{aligned}$$
(A.19)
$$\begin{aligned}&\frac{2}{\pi }\sum \limits _{i=1}^3 {\gamma _{2i} \left[ {\int _0^a {\Phi _{1} (s)} \text{ d }s\int _0^\infty {b_{i1} (\xi )\cos (\xi s)\cos (\xi x)} \text{ d }\xi } \right. }\nonumber \\&\quad \left. -\,\sum \limits _{j=2}^3 {\int _0^a {\Phi _{j} (s)} \text{ d }s\int _0^\infty {b_{ij} (\xi )} \sin (\xi s)\cos (\xi x)\text{ d }\xi } \right] =-(D_{0} -D_{c} ) \end{aligned}$$
(A.20)
$$\begin{aligned}&\frac{2}{\pi }\sum \limits _{i=1}^3 {\gamma _{3i} \left[ {\int _0^a {\Phi _{1} (s)} \text{ d }s\int _0^\infty {b_{(i+6)1} (\xi )\cos (\xi s)\sin s(\xi x)} \text{ d }\xi } \right. }\nonumber \\&\quad \left. {-\,\sum \limits _{j=2}^3 {\int _0^a {\Phi _{j} (s)} \text{ d }s\int _0^\infty {b_{(i+6)j} (\xi )} \sin (\xi s)\cos (\xi x)\text{ d }\xi } } \right] =0 \end{aligned}$$
(A.21)

By considering Eq. (63) and the following limits

$$\begin{aligned}&\lim \limits _{\xi \rightarrow \infty } \sum \limits _{i=1}^3 {\gamma _{ki} b_{ij} (\xi )} =x_{kj} \quad (k=1,2;j=2,3) \end{aligned}$$
(A.22)
$$\begin{aligned}&\lim \limits _{\xi \rightarrow \infty } \sum \limits _{i=1}^3 {\gamma _{ki} b_{(i+6)j} (\xi )} =x_{kj} \quad (k=3;j=1), \end{aligned}$$
(A.23)

we can rewrite Eqs. (A.19)–(A.21) as Eqs. (64)–(66).

Appendix B

The constants \(\alpha _{j} (j=1,2,3)(\hbox {Re}(\alpha _{j} )>0)\) are the roots of the following characteristic equation

$$\begin{aligned} \left| {{\begin{array}{ccc} {c_{11} -c_{44} \alpha ^{2}} &{} {-(c_{13} +c_{44} )\alpha } &{} {-(e_{31} +e_{15} )\alpha } \\ {-(c_{13} +c_{44} )\alpha } &{} {c_{33} \alpha ^{2}-c_{44} } &{} {e_{33} \alpha ^{2}-e_{15} } \\ {-(e_{31} +e_{15} )\alpha } &{} {e_{33} \alpha ^{2}-e_{15} } &{} {\varepsilon _{11} -\varepsilon _{33} \alpha ^{2}} \\ \end{array} }} \right| =0 \end{aligned}$$

The constants \(\eta _{3j} \) and \(\eta _{4j} \) can be obtained from the following relations:

$$\begin{aligned} \alpha _{j}^{2}= & {} \frac{c_{11} }{c_{44} +(c_{13} +c_{44} )\eta _{3j} +(e_{31} +e_{15} )\eta _{4j} }\\= & {} \frac{c_{13} +c_{44} +c_{44} \eta _{3j} +e_{15} \eta _{4j} }{c_{33} \eta _{3j} +e_{33} \eta _{4j} }\\= & {} \frac{e_{31} +e_{15} +e_{15} \eta _{3j} -\varepsilon _{11} \eta _{4j} }{e_{33} \eta _{3j} -\varepsilon _{33} \eta _{4j} } \end{aligned}$$

The constants \(\gamma _{kj} (k=0,1,2,3,4)\) are

$$\begin{aligned} \gamma _{0j}= & {} c_{11} -(c_{33} \eta _{3j} +e_{31} \eta _{4j} )\alpha _{j}^{2}\\ \gamma _{1j}= & {} c_{13} -(c_{33} \eta _{3j} +e_{31} \eta _{4j} )\alpha _{j}^{2}\\ \gamma _{2j}= & {} e_{31} -(e_{33} \eta _{3j} -\varepsilon _{33} \eta _{4j} )\alpha _{j}^{2}\\ \gamma _{3j}= & {} -[c_{44} (1+\eta _{3j} )+e_{15} \eta _{4j} ]\alpha _{j}\\ \gamma _{4j}= & {} -[e_{15} (1-\eta _{3j} )+\varepsilon _{11} \eta _{4j} ]\alpha _{j} \end{aligned}$$

The constants \(\kappa _{k} (k=0,1,2,3,4)\) are given as

$$\begin{aligned} \kappa _{0}= & {} c_{11} N_{1} -c_{12} N_{2} \lambda -e_{31} N_{3} \lambda -\beta _{11}\\ \kappa _{{1}}= & {} c_{1{3}} N_{1} -c_{{33}} N_{2} \lambda -e_{3{3}} N_{3} \lambda -\beta _{{33}}\\ \kappa _{{2}}= & {} e_{31} N_{1} -e_{{33}} N_{2} \lambda +\varepsilon _{3{3}} N_{3} \lambda +p_{z}\\ \kappa _{{3}}= & {} -(c_{44} N_{1} \lambda +c_{44} N_{2} +e_{15} N_{3} )\\ \kappa _{{4}}= & {} -(e_{15} N_{1} \lambda +e_{15} N_{2} -\varepsilon _{11} N_{3} ) \end{aligned}$$

The functions \(k_{ik} ({\overline{s}},{\overline{x}} )(i=1,2,3,k=1,2,3)\) can be calculated as

$$\begin{aligned} k_{11} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\sum \limits _{i=1}^3 {\gamma _{1i} b_{i1} (\xi )\cos (a{\overline{s}} \xi )} } \cos (a{\overline{x}} \xi )\text{ d }\xi \\ k_{12} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\left[ {\sum \limits _{i=1}^3 {\gamma _{1i} b_{i2} (\xi )} -x_{12} } \right] } \sin (a{\overline{s}} \xi )\cos (a{\overline{x}} \xi )\text{ d }\xi \\ k_{13} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\left[ {\sum \limits _{i=1}^3 {\gamma _{1i} b_{i3} (\xi )} -x_{13} } \right] } \sin (a{\overline{s}} \xi )\cos (a{\overline{x}} \xi )\text{ d }\xi \\ k_{21} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\sum \limits _{i=1}^3 {\gamma _{2i} b_{i1} (\xi )\cos (a{\overline{s}} \xi )} } \cos (a{\overline{x}} \xi )\text{ d }\xi \\ k_{22} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\left[ {\sum \limits _{i=1}^3 {\gamma _{2i} b_{i2} (\xi )} -x_{22} } \right] } \sin (a{\overline{s}} \xi )\cos (a{\overline{x}} \xi )\text{ d }\xi \\ k_{23} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\left[ {\sum \limits _{i=1}^3 {\gamma _{2i} b_{i3} (\xi )} -x_{23} } \right] } \sin (a{\overline{s}} \xi )\cos (a{\overline{x}} \xi )\text{ d }\xi \\ k_{31} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\left[ {\sum \limits _{i=1}^3 {\gamma _{3i} b_{(i+6)1} (\xi )} -x_{31} } \right] } \cos (a{\overline{s}} \xi )\sin (a{\overline{x}} \xi )\text{ d }\xi \\ k_{32} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\sum \limits _{i=1}^3 {\gamma _{3i} b_{(i+6)2} (\xi )\sin (a{\overline{s}} \xi )} } \sin (a\overline{x} \xi )\text{ d }\xi \\ k_{33} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\sum \limits _{i=1}^3 {\gamma _{3i} b_{(i+6)3} (\xi )\sin (a{\overline{s}} \xi )} } \sin (a\overline{x} \xi )\text{ d }\xi \end{aligned}$$

The functions \({\overline{k}}_{ik} ({\overline{s}},{\overline{x}} )(i=1,2,3,k=1,2,3,4)\) are given as follows :

$$\begin{aligned} {\overline{k}}_{11} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\sum \limits _{i=1}^3 {\gamma _{1i} {\overline{b}}_{i1} (\xi )\cos (a\overline{s} \xi )} } \cos (a{\overline{x}} \xi )\text{ d }\xi \\ {\overline{k}}_{12} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\left[ {\sum \limits _{i=1}^3 {\gamma _{1i} {\overline{b}}_{i2} (\xi )} -x_{12} } \right] } \sin (a{\overline{s}} \xi )\cos (a{\overline{x}} \xi )\text{ d }\xi \\ {\overline{k}}_{13} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\left[ {\sum \limits _{i=1}^3 {\gamma _{1i} {\overline{b}}_{i3} (\xi )} -x_{13} } \right] } \sin (a{\overline{s}} \xi )\cos (a{\overline{x}} \xi )\text{ d }\xi \\ {\overline{k}}_{21} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\sum \limits _{i=1}^3 {\gamma _{2i} {\overline{b}}_{i1} (\xi )\cos (a\overline{s} \xi )} } \cos (a{\overline{x}} \xi )\text{ d }\xi \\ {\overline{k}}_{22} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\left[ {\sum \limits _{i=1}^3 {\gamma _{2i} {\overline{b}}_{i2} (\xi )} -x_{22} } \right] } \sin (a{\overline{s}} \xi )\cos (a{\overline{x}} \xi )\text{ d }\xi \\ {\overline{k}}_{23} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\left[ {\sum \limits _{i=1}^3 {\gamma _{2i} {\overline{b}}_{i3} (\xi )} -x_{23} } \right] } \sin (a{\overline{s}} \xi )\cos (a{\overline{x}} \xi )\text{ d }\xi \\ {\overline{k}}_{31} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\left[ {\sum \limits _{i=1}^3 {\gamma _{3i} {\overline{b}}_{(i+6)1} (\xi )} -x_{31} } \right] } \cos (a{\overline{s}} \xi )\sin (a{\overline{x}} \xi )\text{ d }\xi \\ {\overline{k}}_{32} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\sum \limits _{i=1}^3 {\gamma _{3i} {\overline{b}}_{(i+6)2} (\xi )\sin (a{\overline{s}} \xi )} } \sin (a{\overline{x}} \xi )\text{ d }\xi \\ {\overline{k}}_{33} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {\sum \limits _{i=1}^3 {\gamma _{3i} {\overline{b}}_{(i+6)3} (\xi )\sin (a{\overline{s}} \xi )} } \sin (a{\overline{x}} \xi )\text{ d }\xi \\ {\overline{k}}_{{14}} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {{\overline{b}}_{{1}} (\xi )\sin (a{\overline{s}} \xi )} \cos (a{\overline{x}} \xi )\text{ d }\xi \\ {\overline{k}}_{{24}} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {{\overline{b}}_{{2}} (\xi )\sin (a{\overline{s}} \xi )} \cos (a{\overline{x}} \xi )\text{ d }\xi \\ {\overline{k}}_{{34}} ({\overline{s}},{\overline{x}} )= & {} a\int _0^\infty {{\overline{b}}_{{3}} (\xi )\sin (a{\overline{s}} \xi )} \sin (a{\overline{x}} \xi )\text{ d }\xi \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Wu, Y. & Zhang, K. An Extended Dielectric Crack Model for Fracture Analysis of a Thermopiezoelectric Strip. Acta Mech. Solida Sin. 33, 521–545 (2020). https://doi.org/10.1007/s10338-019-00149-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00149-9

Keywords

Navigation