Skip to main content
Log in

Active tunability of band gaps for a novel elastic metamaterial plate

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A novel active elastic metamaterial plate is proposed, with tunable vibration band-gap characteristics is by using the periodically placed piezoelectric actuator and sensor pairs along one direction of the plate. Active control strategies are employed to actively adjust the band-gap properties of the metamaterial plate. Displacement and acceleration feedback control methods are applied to design the controllers so that the positive active stiffness and inertia for the elastic metamaterial plate can be provided. The dynamic responses of the finite plate with periodic piezoelectric actuator/sensor pairs are calculated using the spectral element method (SEM), and the calculation accuracy of the SEM is validated by the finite element method. The present results reveal that zero-frequency band gaps can be generated for the elastic metamaterial plate, and the band-gap characteristics in the medium and high frequency ranges can be significantly enhanced by using the acceleration feedback control. Moreover, very wide band gaps for the elastic metamaterial plate can be obtained by using the active acceleration control, and the starting frequencies of the first band gap under the acceleration control can be reduced by increasing the acceleration control gain. The widths of the zero-frequency and Bragg-type band gaps for the elastic metamaterial plate can be amplified by increasing the displacement feedback control gain. The control voltages to be applied on the actuators for the elastic metamaterial plate are also calculated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993)

    Google Scholar 

  2. Mead, D.J.: Wave propagation in continuous periodic structures: research contributions from Southampton 1964–1995. J. Sound Vib. 190, 495–524 (1996)

    Google Scholar 

  3. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Google Scholar 

  4. Hou, Z., Assouar, B.M.: Modeling of Lamb wave propagation in plate with two-dimensional phononic crystal layer coated on uniform substrate using plane-wave-expansion method. Phys. Lett. A 372, 2091–2097 (2008)

    MATH  Google Scholar 

  5. Wang, Y.Z., Li, F.M., Kishimoto, K., Wang, Y.S., Huang, W.H.: Band gaps of elastic waves in three-dimensional piezoelectric phononic crystals with initial stress. Eur. J. Mech. A/Solids 29, 182–189 (2010)

    Google Scholar 

  6. Aly, A.H., Mehaney, A., Abdel-Rahman, E.: Study of physical parameters on the properties of phononic band gaps. Int. J. Mod. Phys. B 27, 1350047 (2013)

    MathSciNet  Google Scholar 

  7. Xiao, Y., Wen, J., Yu, D., Wen, X.: Flexural wave propagation in beams with periodically attached vibration absorbers: band-gap behavior and band formation mechanisms. J. Sound Vib. 322, 867–893 (2013)

    Google Scholar 

  8. Lebon, F., Rizzoni, R.: Higher order interfacial effects for elastic waves in one dimensional phononic crystals via the Lagrange–Hamilton’s principle. Eur. J. Mech. A/Solids 67, 58–70 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Jiang, S., Chen, H., Dai, L.X., Hu, H.P., Laude, V.: Multiple low-frequency broad band gaps generated by a phononic crystal of periodic circular cavity sandwich plates. Compos. Struct. 176, 294–303 (2017)

    Google Scholar 

  10. Liao, L.H., Chen, Y.Y., Huang, G.L., Zhou, X.M.: Broadband low-frequency sound isolation by lightweight adaptive metamaterials. J. Appl. Phys. 123, 091705 (2018)

    Google Scholar 

  11. Jensen, J.S.: Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. J. Sound Vib. 255, 1053–1078 (2003)

    Google Scholar 

  12. Senesi, M., Ruzzene, M.: Piezoelectric superlattices as multi-field internally resonating metamaterials. AIP Adv. 1, 041504 (2011)

    Google Scholar 

  13. Nouh, M., Aldraihem, O., Baz, A.: Wave propagation in metamaterial plates with periodic local resonances. J. Sound Vib. 341, 53–73 (2015)

    Google Scholar 

  14. Pai, P.F., Hao, P., Jiang, S.Y.: Acoustic metamaterial beams based on multi-frequency vibration absorbers. Int. J. Mech. Sci. 79, 195–205 (2014)

    Google Scholar 

  15. Hao, P., Pai, P.F.: Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression. Int. J. Mech. Sci. 89, 350–361 (2014)

    Google Scholar 

  16. Fan, L., Chen, Z., Zhang, S.Y., Ding, J., Li, X.J., Zhang, H.: An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation. Appl. Phys. Lett. 106, 151908 (2015)

    Google Scholar 

  17. Taniker, S., Yilmaz, C.: Phononic gaps induced by inertial amplification in BBC and FCC lattices. Phys. Lett. A 377, 1930–1936 (2013)

    Google Scholar 

  18. Wu, Z.J., Wang, Y.Z., Li, F.M.: Vibration band gap properties of periodic Mindlin plate structure using the spectral element method. Meccanica 49, 725–737 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Wu, Z.J., Li, F.M., Zhang, C.Z.: Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method. J. Sound Vib. 341, 162–173 (2015)

    Google Scholar 

  20. Wu, Z.J., Li, F.M., Zhang, C.Z.: Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method. J. Sound Vib. 421, 246–260 (2018)

    Google Scholar 

  21. Sheng, M.P., Guo, Z.W., Qin, Q., He, Y.A.: Vibration characteristics of a sandwich plate with viscoelastic periodic cores. Compos. Struct. 206, 54–69 (2018)

    Google Scholar 

  22. Mei, J., Ma, G.C., Yang, M., Yang, Z.Y., Wen, W.J., Sheng, P.: Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 756, 1–7 (2012)

    Google Scholar 

  23. Zhou, J.X., Wang, K., Xu, D.L., Ouyang, H.J.: Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams. J. Appl. Phys. 121, 044202 (2017)

    Google Scholar 

  24. Xiao, Y., Wen, J., Wen, X.S.: Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators. J. Phys. D Appl. Phys. 45, 195401 (2012)

    Google Scholar 

  25. Zouari, S., Brocail, J., Génevaux, J.-M.: Flexural wave band gaps in metamaterial plates: a numerical and experimental study from infinite to finite models. J. Sound Vib. 435, 246–263 (2018)

    Google Scholar 

  26. Achaoui, Y., Antonakakis, T., Brûlé, S., Craster, R.V., Enoch, S., Guenneau, S.: Clamped seismic metamaterials: ultra-low frequency stop bands. New J. Phys. 19, 063022 (2017)

    Google Scholar 

  27. Baz, A.: Active control of periodic structures. J. Vib. Acoust. 123, 472–479 (2001)

    Google Scholar 

  28. Li, F.M., Zhang, C.Z., Liu, C.C.: Active tuning of vibration and wave propagation in elastic beams with periodically placed piezoelectric actuator/sensor pairs. J. Sound Vib. 393, 14–29 (2017)

    Google Scholar 

  29. Chen, Y.Y., Huang, G.L., Sun, C.T.: Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting. J. Vib. Acoust. 136, 061008 (2014)

    Google Scholar 

  30. Li, X.P., Chen, Y.Y., Hu, G.K., Huang, G.L.: A self-adaptive metamaterial beam with digitally controlled resonators for subwavelength broadband flexural wave attenuation. Smart Mater. Struct. 27, 045015 (2018)

    Google Scholar 

  31. Piliposian, G.T., Avetisyan, A.S., Ghazaryan, K.B.: Shear wave propagation in periodic phononic/photonic piezoelectric medium. Wave Motion 49, 125–134 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Piliposyan, D.G., Piliposian, G.T., Ghazaryan, K.B.: Propagation and control of shear waves in piezoelectric composite waveguides with metallized interfaces. Int. J. Solids Struct. 106–107, 119–128 (2017)

    Google Scholar 

  33. Yi, K.J., Ouisse, M., Sadoulet-Reboul, E., Matten, G.: Active metamaterials with broadband controllable stiffness for tunable band gaps and non-reciprocal wave propagation. Smart Mater. Struct. 28, 065025 (2019)

    Google Scholar 

  34. Wang, G., Wang, J.W., Chen, S.B., Wen, J.H.: Vibration attenuations induced by periodic arrays of piezoelectric patches connected by enhanced resonant shunting circuits. Smart Mater. Struct. 20, 125019 (2011)

    Google Scholar 

  35. Zhang, Z.F., Li, S.D., Huang, Q.B.: Low-frequency sound radiation of infinite orthogonally rib-stiffened sandwich structure with periodic subwavelength arrays of shunted piezoelectric patches. Compos. Struct. 187, 144–156 (2018)

    Google Scholar 

  36. Chen, S.B., Wang, G., Wen, J.H., Wen, X.S.: Wave propagation and attenuation in plates with periodic arrays of shunted piezo-patches. J. Sound Vib. 332, 1520–1532 (2013)

    Google Scholar 

  37. Chen, S.B.: Wave propagation in acoustic metamaterials with resonantly shunted cross-shape piezos. J. Intell. Mater. Syst. Struct. 29, 2744–2753 (2018)

    Google Scholar 

  38. Airoldi, L., Ruzzene, M.: Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. New J. Phys. 13, 113010 (2011)

    Google Scholar 

  39. Casadei, F., Delpero, T., Bergamini, A., Ermanni, P., Ruzzene, M.: Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials. J. Appl. Phys. 112, 064902 (2012)

    Google Scholar 

  40. Zhang, H., Wen, J., Xiao, Y., Wang, G., Wen, X.: Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches. J. Sound Vib. 343, 104–120 (2015)

    Google Scholar 

  41. Edgar, A., Parra, F., Bergamini, A., Damme, B.V., Ermanni, P.: Controllable wave propagation of hybrid dispersive media with LC high-pass and band-pass networks. Appl. Phys. Lett. 110, 184103 (2017)

    Google Scholar 

  42. Edgar, A., Parra, F., Bergamini, A., Lossouarn, B., Damme, B.V., Cenedese, M., Ermanni, P.: Bandgap control with local and interconnected LC piezoelectric shunts. Appl. Phys. Lett. 111, 111902 (2017)

    Google Scholar 

  43. Kherraz, N., Haumesser, L., Levassort, F., Benard, P., Morvan, B.: Hybridization bandgap induced by an electrical resonance in piezoelectric metamaterial plates. J. Appl. Phys. 123, 094901 (2018)

    Google Scholar 

  44. Sugino, C., Leadenham, S., Ruzzene, M., Erturk, A.: An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures. Smart Mater. Struct. 26, 055029 (2017)

    Google Scholar 

  45. Mansoura, S.A., Maréchal, P., Morvan, B., Dubus, B.: Analysis of a phononic crystal constituted of piezoelectric layers using electrical impedance measurement. Phys. Proc. 70, 283–286 (2015)

    Google Scholar 

  46. Bao, B., Guyomar, D., Lallart, M.: Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks. Mech. Syst. Signal Process. 82, 230–259 (2017)

    Google Scholar 

  47. Antonakakis, T., Craster, R.V., Guenneau, S.: High-frequency homogenization of zero-frequency stop band photonic and phononic crystals. New J. Phys. 15, 103014 (2013)

    Google Scholar 

Download references

Acknowledgements

This research work is supported by the National Natural Science Foundation of China (Project-Nos. 11761131006, 11572007, 11402067), the German Research Foundation (DFG, Project-No. ZH 15/30-1) and the Basic Research Foundation of Chinese University (Project-Nos. 3072019CFJ0205, HEUCFJ180203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunchuan Liu or Fengming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, T., Liu, C., Li, F. et al. Active tunability of band gaps for a novel elastic metamaterial plate. Acta Mech 231, 4035–4053 (2020). https://doi.org/10.1007/s00707-020-02728-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02728-1

Navigation