Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 8, 2020

Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines

  • Silvio Preusser , Diana Kalden , Felix Wendler , Paul R. W. Schönherr , Helmar Görls , Matthias Westerhausen EMAIL logo and Wolfgang Imhof EMAIL logo

Abstract

Catalytic dealkylating cycloamination reactions of N1-methylated-N1,N3-diarylated triazenes proceed via two subsequent oxidative addition reactions, regioselectivity producing benzotriazoles by C–H and C–Br activation steps. Whereas palladium-based catalysis in the presence of dealkylating reagents and directing phosphane ligands leads to high yields, the homologous metals nickel and platinum as well as other 3d transition metals show only poor catalytic activity in similar procedures. Starting compounds have been widely varied to introduce potentially competing reaction sites and to investigate the reaction mechanism of the catalytic cyclization reactions. Yields of the benzotriazole synthesis strongly depend on the electronic and steric properties of the directing phosphane ligands, the nature of the dealkylating bases and the substitution pattern in 2- and 4-position of the aryl groups of the starting triazenes. In order to clarify the role of the catalyst, palladium-based intermediates were identified. Finally, formamidines and bulky amidines were tested in related C–H activated dealkylating cycloamination reactions.

Graphical Abstract


Corresponding authors: Wolfgang Imhof, Institute of Integrated Natural Sciences, University Koblenz – Landau, Universitätsstraße 1, D-56070 Koblenz, Germany, E-mail: ; and Matthias Westerhausen, Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstraße 8, D-07743 Jena, Germany, E-mail:

Funding source: Laborchemie Apolda

Acknowledgments

The work is based on an industrial collaboration. We thank Laborchemie Apolda for generous financial and scientific support. We acknowledge the valuable support of the NMR (www.nmr.uni-jena.de/) and mass spectrometry service platforms (www.ms.uni-jena.de/) of the Faculty of Chemistry and Earth Sciences of the Friedrich Schiller University Jena, Germany.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Laborchemie Apolda, Friedrich Schiller University Jena.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Gurvinder, S., Maninderjit, K., Mohan, C. Benzimidazoles: the latest information on biological activities. Int. Res. J. Pharm. 2013, 4, 82–87.Search in Google Scholar

2. Davidse, L.-C. Benzimidazole fungicides: mechanism of action and biological impact. Ann. Rev. Phytopathol. 1986, 24, 43–65, https://doi.org/10.1146/annurev.py.24.090186.000355.Search in Google Scholar

3. Králova, V., Hanušová, V., Staňková, P., Knoppová, K., Čaňová, K., Skálová, L. Antiproliferative effect of benzimidazole antihelmintics albendazole, ricobendazole and flubendazole in intestinal cancer cell lines. Anti-Cancer Drug 2013, 24, 911–919, https://doi.org/10.1097/cad.0b013e3283648c69.Search in Google Scholar PubMed

4. Wu, C.-Y., King, K.-Y., Kuo, C.-J., Fang, J.-M., Wu, Y.-T., Ho, M.-Y., Liao, C.-L., Shie, J.-J., Liang, P.-H., Wong, C.-H. Stable benzotriatole esters as mechanism-based inactivators of severe acute respiratory syndrome 3Cl protease. Chem. Biol. 2006, 13, 261–268.10.1016/j.chembiol.2005.12.008Search in Google Scholar PubMed PubMed Central

5. Carvalho, L .C. R., Fernandes, E., Marques, M. M. B. Developments towards regioselective synthesis of 1,2-disubstituted benzimidazoles. Chem. Eur. J. 2011, 17, 12544–12555, https://doi.org/10.1002/chem.201101508.Search in Google Scholar PubMed

6. Jiang, Y., Ma, D. Assembly of N-containing heterocycles via Pd- and Cu-catalyzed C-N-bond formation reactions. Top. Organomet. Chem. 2013, 46, 87–118.10.1007/3418_2013_61Search in Google Scholar

7. Elwahy, A. H. M., Shaaban, M. R. Synthesis of heterocycles and fused heterocycles catalyzed by nanomaterials. RSC Adv. 2015, 5, 75659–75710, https://doi.org/10.1039/c5ra11421g.Search in Google Scholar

8. Largeron, M., Nguyen, K. M. H. Recent advances in the synthesis of benzimidazole derivatives from the oxidative coupling of primary amines. Synthesis 2018, 50, 241–253, https://doi.org/10.1055/s-0036-1590915.Search in Google Scholar

9. Sharma, J., Soni, P. K., Bansal, R., Halve, A. K. Synthetic approaches towards benzimidazoles by the reaction of o-phenylenediamine with aldehydes using a variety of catalysts: a review. Curr. Org. Chem. 2018, 22, 2280–2299, https://doi.org/10.2174/1385272822666181024120156.Search in Google Scholar

10. Brain, C. T., Steer, J. T. An improved procedure for the synthesis of benzimidazoles using palladium-catalyzed aryl-amination chemistry. J. Org. Chem. 2003, 68, 6814–6816, https://doi.org/10.1021/jo034824l.Search in Google Scholar PubMed

11. Liu, Q.-L., Wen, D.-D., Hang, C. C., Li, Q.-L., Zhu, Y.-M. A novel and regiospecific synthesis of 1-aryl-1H-benzotriazoles via copper(I)-catalyzed intramolecular cyclization reactions. Helv. Chim. Acta 2010, 93, 1350–1354.10.1002/hlca.200900384Search in Google Scholar

12. Chen, X., Engle, K. M., Wang, D.-H., Yu, J.-Q. Palladium(II)-catalyzed CH-activation/CC-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 2009, 48, 5094–5115.10.1002/anie.200806273Search in Google Scholar PubMed PubMed Central

13. Wendlandt, A. E., Suess, A. M., Stahl, S. S. Copper-catalyzed aerobic oxidative CH-functionalization: trends and mechanistic insights. Angew. Chem. Int. Ed. 2011, 50, 11062–11087, https://doi.org/10.1002/anie.201103945.Search in Google Scholar PubMed

14. Kumar, R. K., Ali, M. A., Punniyamurthy, T. Pd-catalyzed CH activation/CN bond formation: a new route to 1-aryl-1H-benzotriazoles. Org. Lett. 2011, 13, 2102–2105, https://doi.org/10.1021/ol200523a.Search in Google Scholar PubMed

15. Zhou, J., He, J., Wang, B., Yang, W., Ren, H. 1,7-Palladium migration via CH activation, followed by intramolecular amination: regioselective synthesis of benzotriazoles. J. Am. Chem. Soc. 2011, 133, 6868–6870, https://doi.org/10.1021/ja2007438.Search in Google Scholar PubMed

16. Takakgi, K., Al-Amin, M., Hoshiya, N., Wouters, J., Sugimoto, H., Shiro, Y., Fukuda, H., Shuto, S., Arisawa, M. Palladium-nanoparticle-catalyzed 1,7-palladium migration involving CH activation followed by intramolecular amination: regioselective synthesis of N1-arylbenzotriazoles and an evaluation of their inhibitory activity toward indoleamine-2,3-dioxygenase. J. Org. Chem. 2014, 79, 6366–6371, https://doi.org/10.1021/jo5009838.Search in Google Scholar PubMed

17. Tolman, C. A. Steric effects of phosporous ligands in organometallic chemistry and homogeneous catalysis. Chem. Rev. 1977, 77, 313–348, https://doi.org/10.1021/cr60307a002.Search in Google Scholar

18. Müller, T. E., Mingos, D. M. P. Determination of the tolman cone angle from crystallographic parameters and a statistical analysis using the crystallographic data base. Trans. Met. Chem. 1995, 20, 533–539, https://doi.org/10.1007/bf00136415.Search in Google Scholar

19. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Gaussian, Inc.: Wallingford CT, 2010.Search in Google Scholar

20. Becke, A. D. Density funtional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652, https://doi.org/10.1063/1.464913.Search in Google Scholar

21. Lee, C., Yang, W. W., Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 1988, B37, 785–789, https://doi.org/10.1103/physrevb.37.785.Search in Google Scholar PubMed

22. Dolg, M., Stoll, H., Preuss, H. A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor. Chim. Acta. 1993, 85, 441–450, https://doi.org/10.1007/bf01112983.Search in Google Scholar

23. Bergner, A., Dolg, M., Küchle, W., Stoll, H., Preuss, H. Ab initio energy-Adjusted pseudopotentials for elements of group 13-17. Mol. Phys. 1993, 80, 1431–1441.10.1080/00268979300103121Search in Google Scholar

24. Preusser, S., Schönherr, P. R. W., Görls, H., Imhof, W., Krieck, S., Westerhausen, M. Diaryltriazenido palladium(II) complexes derived from 1-(2-bromo-4-ethoxycarbonylphenyl)-3-phenyltriazenes. J. Organomet. Chem. 2019, 898, 120875.10.1016/j.jorganchem.2019.120875Search in Google Scholar

25. Preusser, S., Schönherr, P. R. W., Görls, H., Krieck, S., Imhof, W., Westerhausen, M. 2-Halo- and/or 4-ethoxycarbonyl-substituted asymmetric 1,3-diaryltriazenes and 1,3-diarylamidines as well as N-methylated congeners. J. Mol. Struct. 2020, 1205, 127622, https://doi.org/10.1016/j.molstruc.2019.127622.Search in Google Scholar

26. Li, D., Xu, N., Zhang, Y., Wang, L. A highly efficient Pd-catalyzed decarboxylative ortho-arylation of amides with aryl acylperoxides. Chem. Commun. 2014, 50, 14862–14865, https://doi.org/10.1039/c4cc06457g.Search in Google Scholar

27. Hooft, R. W. W. COLLECT, Nonius KappaCCD Data Collection Software, Nonius BV: Delft (The Netherlands), 1998.Search in Google Scholar

28. Otwinowski, Z., Minor, W. In Methods in Enzymology; C. W. CarterJr, R. M. Sweet (Eds.) Macromolecular Crystallography, Part A, New York: Academic Press, Vol. 276, 1997; pp. 307–326.10.1016/S0076-6879(97)76066-XSearch in Google Scholar

29. SADABS (Version 2.10), Bruker AXS Inc.: Madison, Wisconsin (USA), 2002.Search in Google Scholar

30. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

31. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M., van de Streek, J. Mercury: Crystal Structure Visualisation, Exploration and Analysis Made Easy; J. Appl. Crystallogr. 2006, 39, 453.10.1107/S002188980600731XSearch in Google Scholar

Supplementary Material

Supplementary data to this article can be found online at https://doi.org/10.1515/znb-2020-0067.

Received: 2020-04-29
Accepted: 2020-05-20
Published Online: 2020-07-08
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0067/html
Scroll to top button