Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 8, 2020

The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres

  • Jen-Hui Chang , Thomas Doert and Michael Ruck EMAIL logo

Abstract

Yellow prismatic crystals of rubidium bromido-antimonate(III) Rb7Sb3Br16 and of two different modifications of thallium bromido-bismuthate(III) Tl7Bi3Br16 were obtained by solvent-free synthesis and by precipitation from acidic aqueous solutions. X-ray diffraction analyses revealed the Tl7Bi3I16-type for α-Tl7Bi3Br16 (orthorhombic, Cmcm, a = 2324.31(8) pm, b = 1346.69(4) pm, c = 3460.0(1) pm; Pearson symbol oC312) and a new structure type for β-Tl7Bi3Br16 (monoclinic, C2/c, a = 2331.87(5) pm, b = 1343.33(3) pm, c = 3546.01(7) pm, β = 102.708(1)°; mC312). The antimonate Rb7Sb3Br16 adopts the Tl7Bi3I16-type, too (orthorhombic, Cmcm, a = 2347.16(3) pm, b = 1357.89(5) pm, c = 3539.47(9) pm; oC312). The crystal structures of α- and β-Tl7Bi3Br16 comprise alternating slabs of isolated [BiBr6]3– octahedra and [Bi2Br10]4– octahedra pairs. Both structure types are hierarchically organized and can be regarded as sphere close packing with the same stacking sequence, if octahedra and octahedra pairs are replaced by spheres of equal size. The structural relationship between the Tl7Bi3I16-type and the hydrate Na7Bi3Br16 · 18H2O, which comprises similar structural features, is discussed.


Dedicated to Professor Dr. Ulrich Müller on the occasion of his 80th birthday.



Corresponding author: Michael Ruck, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062Dresden, Germany; and Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187Dresden, Germany, E-mail:

Acknowledgments

We thank Dr. Gudrun Auffermann, Max Planck Institute for Chemical Physics of Solids, Dresden, for ICP-OES, ICP-MS and CIC analyses.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Fisher, G. A., Norman, N. C. The structures of the group 15 element (III) halides and halogenoanions. Adv. Inorg. Chem. 1994, 41, 233–271.10.1016/S0898-8838(08)60173-7Search in Google Scholar

2. Preitschaft, C. Ternäre und quaternäre Materialien mit komplexen Thio-, Selenido- und Halogenid-Anionen. Ph. D. Thesis, Universität Regensburg: Regensburg, Germany, 2004.Search in Google Scholar

3. Chang, J.-H., Doert, T., Ruck, M. (H3O)3Sb2Br9: the first member of the M3E2X9 structure family with oxonium cations. Acta Crystallogr. C 2016, 72, 966–970; https://doi.org/10.1107/S2053229616017198.Search in Google Scholar PubMed

4. Beck, J., Benz, S. Crystalline and glassy phases in the ternary system Tl/Bi/Cl: synthesis and crystal structures of the Thallium(I) Chloridobismutates(III). Z. Anorg. Allg. Chem. 2010, 636, 928–935; https://doi.org/10.1002/zaac.200900567.Search in Google Scholar

5. Aussieker, T., Keller, H. L., Oldag, T., Prots, Y., Ruck, M., Wosylus, A. Syntheses and crystal structures of the Thallium(I) Iodobismuthates(III) Tl7Bi3I16 and Tl3BiI6. Z. Anorg. Allg. Chem. 2007, 633, 603–609; https://doi.org/10.1002/zaac.200600379.Search in Google Scholar

6. Wosylus, A., Schwarz, U., Ruck, M. The crystal structure of Tl3Bi2I9: a complex defect and deformation variant of the Perovskite structure type. Z. Anorg. Allg. Chem. 2005, 631, 1055–1059; https://doi.org/10.1002/chin.200529029.Search in Google Scholar

7. Hagemann, M., Weber, H. J. Are ternary halides useful materials for nonlinear optical applications? Appl. Phys. 1996, A63, 67–74; https://doi.org/10.1007/BF01579747.Search in Google Scholar

8. Kelly, A. W., Nicholas, A., Ahern, J. C., Chan, B., Patterson, H. H., Pike, R. D. Alkali metal bismuth (III) chloride double salts. J. Alloys Compd. 2016, 670, 337–345; https://doi.org/10.1016/j.jallcom.2016.02.055.Search in Google Scholar

9. Lazarini, F. Sodium Hexabromobismuthate(III) Decabromodibismuthate(III) 18-hydrate. Acta Crystallogr. B 1980, 36, 2748–2750; https://doi.org/10.2165/00003495-197612060-00001.Search in Google Scholar PubMed

10. Kun, S. V., Lazarev, V. B., Peresh, E. Y., Kun, A. V., Voroshilov, Y. V. Phase equilibria in RbBr– -Sb(Bi)Br3 systems and crystal structure of compounds of A3(I)B2(V)C9(VII) Type (A(I)=Rb, Cs, B(V) = Sb, BI, C(VII) = Br, I). Izv. Akad. Nauk SSSR, Neorg. Mater. 1993, 29, 445–450.Search in Google Scholar

11. Kun, S. V., Peresh, E. Y., Lazarev, V. B., Kun, A. V. Phase equilibria, preparation, and properties of compounds in the systems CsBr–Bi (Sb) Br3. Izv. Akad. Nauk SSSR Neorg. Mater. 1991, 27, 611–615.Search in Google Scholar

12. Chang, J.-H., Wolff, A., Ruck, M. Crystal structures of MBi2Br7 (M = Rb, Cs) – filled variants of AX7 sphere packing. Z. Anorg. Allg. Chem. 2016, 642, 456–460; https://doi.org/10.1002/zaac.201500820.Search in Google Scholar

13. Chang, J.-H., Doert, T., Ruck, M. Structural variety of defect Perovskite variants M3E2X9 (M = Rb, Tl, E = Bi, Sb, X = Br, I). Z. Anorg. Allg. Chem. 2016, 643, 736–748; https://doi.org/10.1002/zaac.201600179.Search in Google Scholar

14. Chang, J.-H. Crystal Structures of oP-Cs3BiBr6 (Cs3YbCl6 type[26]) and mC-Cs3BiBr6 (Cs3BiCl6 type[27]); unpublished.Search in Google Scholar

15. Lazarini, F. Caesium enneabromodibismuthate (III). Acta Crystallogr. B 1977, 33, 2961–2964; https://doi.org/10.1107/S0567740877009984.Search in Google Scholar

16. Lazarini, F. Rubidium hexabromobismuthate (III). Acta Crystallogr. B 1978, 34, 2288–2290; https://doi.org/10.1107/S0567740878007918.Search in Google Scholar

17. Aleksandrova, I. P., Burriel, R., Bartolome, J., Bagautdinov, B. S., Blasco, J., Sukhovsky, A. A., Torres, J. M., Vasiljev, A. D., Solovjev, L. A. Low-temperature phase transitions in the trigonal modification of Cs3Bi2Br9 and Cs3Sb2I9. Phase Transit. 2002, 75, 607–620; https://doi.org/10.1080/01411590290029863a.Search in Google Scholar

18. Liang, L., Gao, P. Lead-free hybrid Perovskite absorbers for viable application: can we eat the cake and have it too? Adv. Sci. 2018, 5, 1700331; https://doi.org/10.1002/advs.201700331.Search in Google Scholar

19. Fu, H. Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: from materials to solar cells. Solar Energy Mater. Solar Cells 2019, 193, 107–132; https://doi.org/10.1016/j.solmat.2018.12.038.Search in Google Scholar

20. APEX2, Version 2014/9. Bruker AXS Inc.: Madison, WI, USA, 2014.10.1016/S1365-6937(14)70258-8Search in Google Scholar

21. Sheldrick, M. Sadabs: Area-Detector Absorption Correction, Version 2014/4, Bruker AXS Inc.: Madison, WI, USA, 2014.Search in Google Scholar

22. X-Shape, Crystal Optimization for Numerical Absorption Correction Program, Version 2.12.2, Stoe & Cie GmbH: Darmstadt, 2009.Search in Google Scholar

23. Sheldrick, G. M. SHELX2014. Programs for Crystal Structure Determination. Universität Göttingen, Germany, 2014.Search in Google Scholar

24. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122; https://doi.org/10.1107/S0108767307043930.Search in Google Scholar PubMed

25. Gelato, L. M., Parthé, E. Structure Tidy – a computer program to standardize crystal structure data. J. Appl. Cryst. 1987, 20, 139–143; https://doi.org/10.1107/S0021889887086965.Search in Google Scholar

26. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D 2009, 65, 148–155; https://doi.org/10.1107/S090744490804362X.Search in Google Scholar PubMed PubMed Central

27. Brandenburg, K. Diamond 4. Crystal Impact GbR: Bonn, 2017.Search in Google Scholar

28. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767; https://doi.org/10.1107/S0567739476001551.Search in Google Scholar

29. Isaeva, A., Ruck, M. Crystal chemistry and bonding patterns of bismuth-based topological insulators. Inorg. Chem. 2020, 59, 3437–3451; https://doi.org/10.1021/acs.inorgchem.9b03461.Search in Google Scholar

30. Lin, R.-G., Xu, G., Wang, M.-S., Lu, G., Li, P.-X., Guo, G.-C. Improved photochromic properties on viologen-based inorganic–organic hybrids by using π-conjugated substituents as electron donors and stabilizers. Inorg. Chem. 2013, 52, 1199–1205; https://doi.org/10.1021/ic301181b.Search in Google Scholar

31. Adonin, S. A., Gorokh, I. D., Novikov, A. S., Samsonenko, D. G., Korolkov, I. V., Sokolov, M. N., Fedin, V. P. Bromobismuthates: cation-induced structural diversity and Hirshfeld surface analysis of cation–anion contacts. Polyhedron 2018, 139, 282–288; https://doi.org/10.1016/j.poly.2017.11.002.Search in Google Scholar

32. Moon, T. H., Oh, S.-J., Ok, K. M. [((R)-C8H12N)4][Bi2Br10] and [((S)-C8H12N)4][Bi2Br10]: chiral hybrid bismuth bromides templated by chiral organic cations. ACS Omega 2018, 3, 17895–17903; https://doi.org/10.1021/acsomega.8b02877.Search in Google Scholar

33. Chabot, B., Parthé, E. Cs3Sb2I9 and Cs3Bi2I9 with the hexagonal Cs3Cr2Cl9 structure type. Acta Crystallogr. B 1978, 34, 645–648; https://doi.org/10.1107/S0567740878003684.Search in Google Scholar

34. Sebastian, J., Seifert, H.-J. Ternary chlorides in the systems ACl/YbCl3 (A = Cs, Rb, K). Thermochim. Acta 1997, 318, 29–37; https://doi.org/10.1016/S0040-6031(98)00326-8.Search in Google Scholar

35. Benachenhou, F., Mairesse, G., Nowogrocki, G., Thomas, D. Structural studies of Cs-K-Bi mixed chlorides relation to the crystal structures of A2BMX6, A3MX6, and A2MX6. J. Solid State Chem. 1986, 65, 13–26; https://doi.org/10.1016/0022-4596(86)90085-X.Search in Google Scholar

36. Tang, Y., Liang, M., Chang, B., Sun, H., Zheng, K., Pullerits, T., Chi, Q. Lead-free double halide perovskite Cs3BiBr6 with well-defined crystal structure and high thermal stability for optoelectronics. J. Mater. Chem. C 2019, 7, 3369–3374; https://doi.org/10.1039/C8TC05480K.Search in Google Scholar

37. Mattfeld, H., Meyer, G. Ternäre halogenide vom Typ A3MX6. I. A3YCl6 (A = K, NH4, Rb, Cs): synthese, strukturen, thermisches verhalten. Über einige analoge Chloride der Lanthanide. Z. Anorg. Allg. Chem. 1992, 618, 13–17.10.1002/zaac.19926180103Search in Google Scholar

38. Schilling, G., Böcker, M., Möller, A., Meyer, G. Neue gemischtvalente ternäre bromide und iodide mit dysprosium und Thulium vom Typ A5M3X12. Z. Anorg. Allg. Chem. 2001, 627, 1309–1312; https://doi.org/10.1002/1521-3749(200106)627:6<1309::AID-ZAAC1309>3.0.CO;2-W.10.1002/1521-3749(200106)627:6<1309::AID-ZAAC1309>3.0.CO;2-WSearch in Google Scholar


Supplementary material

The online version of this article offers supplementary material https://doi.org/zkri-2020-0013.


Received: 2020-02-12
Accepted: 2020-04-03
Published Online: 2020-07-08
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2020-0013/html
Scroll to top button