Skip to main content
Log in

Current Changes in Winter Air Temperature in the Middle and High Latitudes of the Northern Hemisphere

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The spatiotemporal analysis of the relationship between the total column water vapor in winter and the sea surface temperature anomalies in the equatorial Pacific was performed. It is shown that this relationship is manifested with a delay of not more than a month for the continents located at the middle and high latitudes of the Northern Hemisphere. Depending on the sign of the temperature anomaly in the equatorial Pacific, in the atmosphere over the land in the zone of 30°–75° N in winter water vapor content decreases or increases, thus leading to the slowdown or enhancement of the effect of anthropogenic global warming. The long periods with the low intensity of El Niño and with the frequent occurrence of La Niña cause a trend towards a decrease in total column water vapor. This explains winter air temperature decrease over the land in the zone of 30°–75° N in the middle of the 20th century and at the beginning of the 21st century. Changes in the phase of the Interdecadal Pacific Oscillation mainly characterized by one sign of the temperature anomaly in the equatorial Pacific are accompanied by a change in the winter air temperature trend in the middle and high latitudes but have little effect on the rate of summer air temperature growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. I. Byshev, V. G. Neiman, Yu. A. Romanov, and I. V. Serykh, “El Niño as a Consequence of the Global Oscillation in the Dynamics of the Earth’s Climatic System,” Dokl. Akad. Nauk, No. 1,446 (2012) [Dokl. Earth Sci., No. 1, 446 (2012)].

  2. V. I. Byshev, A. L. Figurkin, and I. M. Anisimov, “Interdecadal Variability in Thermal Structure of Water in the Upper Active Layer in the Northwestern Pacific Ocean,” Dokl. Akad. Nauk, No. 2,447 (2017) [Dokl. Earth Sci., No. 1, 447 (2017)].

  3. V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

  4. V. F. Loginov, Global and Regional Climate Change: Causes and Effects (TetraSistems, Minsk, 2008) [in Russian].

  5. V. F. Loginov, “Trends, “Jumps,” and Pauses in Global and Regional Temperature Change and Their Possible Causes,” Ukrainskii Geograficheskii Zhurnal, No. 1 (2015) [in Ukrainian].

  6. V. F. Loginov and S. A. Lysenko, “Assessment of the Role of the Pacific Ocean under Modern Climate Change,” Izv. Akad. Nauk, Geografiya, No. 3 (2019) [in Russian].

  7. V. F. Loginov and V. S. Mikutskii, Climate Change: Trends, Cycles, and Pauses (Belaruskaya Navuka, Minsk, 2017) [in Russian].

  8. D. Aiguo, J. C. Fyfe, S.-P. Xie, and X. Dai, “Decadal Modulation of Global Surface Temperature by Internal Climate Variability,” Nature Climate Change, No. 6, 5 (2015).

  9. A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER Spectral Library Version 2.0,” Remote Sens. Environ., No. 4,113 (2009).

  10. G. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).

  11. V. I. Byshev, V. G. Neiman, M. V. Anisimov, A. V. Gusev, I. V. Serykh, A. N. Sidorova, A. L. Figurkin, and I. M. Anisimov, “Multi-decadal Oscillations of the Ocean Active Upper-layer Heat Content,” Pure Appl. Geophys., No. 7, 174 (2017).

  12. B. Chen and Z. Liu, “Global Water Vapor Variability and Trend from the Latest 36 Year (1979 to 2014) Data of ECMWF and NCEP Reanalyses, Radiosonde, GPS, and Microwave Satellite,” J. Geophys. Res., No. 19, 121 (2016).

  13. X.-G. Dai and P. Wang, “Identifying the Early 2000s Hiatus Associated with Internal Climate Variability,” Sci. Rep.,8 (2018).

  14. C. Deser, R. Guo, and F. Lehner, “Trajectories toward the 1.5°C Paris Target: Modulation by the Interdecadal Pacific Oscillation,” Geophys. Res. Lett., No. 9, 44 (2017).

  15. A. E. Dessler, Z. Zhang, and P. Yang, “Water-vapor Climate Feedback Inferred from Climate Fluctuations, 2003–2008,” Geophys. Res. Lett., No. 20, 35 (2008).

  16. M. H. England, S. McGregor, P. Spence, G. A. Meehl, A. Timmermann, W. Cai, A. S. Gupta, M. J. McPhaden, A. Purich, and A. Santoso, “Recent Intensification of Wind-driven Circulation in the Pacific and the Ongoing Warming Hiatus,” Nature Climate Change,4 (2014).

  17. G. Hong, P. Yang, B. A. Baum, A. J. Heymsfield, and K.-M. Xu, “Parameterization of Shortwave and Longwave Radiative Properties of Ice Clouds for Use in Climate Models,” J. Climate, No. 23,22 (2009).

  18. S. Hu and A. V. Fedorov, “The Extreme El Niño of 2015–2016 and the End of Global Warming Hiatus,” Geophys. Res. Lett., No. 8,44 (2017).

  19. Y. Kosaka and S.-P. Xie, “Recent Global-warming Hiatus Tied to Equatorial Pacific Surface Cooling,” Nature, No. 7467,501 (2013).

  20. E. J. Mlawer, V. H. Payne, J. L. Moncet, J. S. Delamere, M. J. Alvarado, and D. C. Tobin, “Development and Recent Evaluation of the MT_CKD Model of Continuum Absorption,” Phil. Trans. Roy. Soc. A, No. 1968, 370 (2012).

  21. J. S. Risbey, S. Lewandowsky, C. Langlais, D. P. Monselesan, T. J. O’Kane, and N. Oreskes, “Well-estimated Global Surface Warming in Climate Projections Selected for ENSO,” Nature Climate Change, No. 9,4 (2014).

  22. D. A. Robinson and T. W. Estilow, NOAA CDR Program NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1 (NOAA National Centers for Environmental Information, 2012).

  23. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Couderti, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 Molecular Spectroscopic Database,” J. Quant. Spectroscopy & Radiative Transfer, No. 9–10, 110 (2009).

  24. B. D. Santer, S. Po-Chedley, M. D. Zelinka, I. Cvijanovic, C. Bonfils, P. J. Durack, Q. Fu, J. Kiehl, C. Mears, J. Painter, G. Pallotta, S. Solomon, F. J. Wentz, and C.-Z. Zou, “Human Influence on the Seasonal Cycle of Tropospheric Temperature,” Science,361 (2018).

  25. G. D. Thornhill, C. L. Ryder, E. J. Highwood, L. C. Shaffrey, and B. T. Johnson, “The Effect of South American Biomass Burning Aerosol Emissions on the Regional Climate,” Atmos. Chem. Phys., No. 8,18 (2018).

  26. J. Zhao, R. Zhan, and Y. Wang, “Global Warming Hiatus Contributed to the Increased Occurrence of Intense Tropical Cyclones in the Coastal Regions along East Asia,” Sci. Rep., No. 8,16 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lysenko.

Additional information

Russian Text ©The Author(s), 2020, published in Meteorologiya i Gidrologiya, 2020, No. 4, pp. 6–17.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, S.A., Loginov, V.F. Current Changes in Winter Air Temperature in the Middle and High Latitudes of the Northern Hemisphere. Russ. Meteorol. Hydrol. 45, 219–226 (2020). https://doi.org/10.3103/S1068373920040019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373920040019

Keywords

Navigation