Skip to main content
Log in

Biometric Relationships between Otolith and Fish Size of the Main Demersal Resources of North Patagonia, Argentina

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Allometric power equations are generated using otolith length and width in order to estimate the total length of five demersal species inhabiting the San Matias Gulf, the second largest gulf in Argentina. The selected fish species are economically important resources in Argentina and have been identified as prey for the system’s main predators. A total of 2795 specimens were sampled, and data were fitted using the nonlinear least squares analysis. It is shown that the length and width of the otolith are good predictors of the total fish length. A slightly better regression fit is observed when otolith length was considered as a predictor. Statistically significant morphometric differences in regression models were observed between sexes, except for Acanthistius patachonicus. Results are discussed and compared with those reported by other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Agüero, J.D., Chollet-Villalpando, J.G., and Valle-López, F.L., Relationships between sagittal otolith length and fish size for 14 mojarra species (Gerreidae: Perciformes) in Mexico, Turk. J. Fish. Aquat. Sci., 2016, vol. 16, no. 3, pp. 629–636. https://doi.org/10.4194/1303-2712-v16_3_16

    Article  Google Scholar 

  2. Alonso, R., Romero, M.A., Ocampo Reinaldo, M., Bustelo, P., Medina, A., and González, R., The opportunistic sense: the diet of Argentine hake Merluccius hubbsi reflects changes in prey availability, Reg. Stud. Mar. Sci., 2019, vol. 27, art. ID 100540. https://doi.org/10.1016/j.rsma.2019.100540

    Article  Google Scholar 

  3. Altin, A. and Ayyildiz, H., Relationships between total length and otolith measurements for 36 fish species from Gökçeada Island, Turkey, J. Appl. Ichthyol., 2018, vol. 34, no. 1, pp. 136–141. https://doi.org/10.1111/jai.13509

    Article  Google Scholar 

  4. Avigliano, E., Saez, M.B., Rico, R., and Volpedo, A.V., Use of otolith strontium: calcium and zinc: calcium ratios as an indicator of the habitat of Percophis brasiliensis Quoy & Gaimard, 1825 in the southwestern Atlantic Ocean, Neotrop. Ichthyol., 2015, vol. 13, no. 1, pp. 187–194. https://doi.org/10.1590/1982-0224-20130235

    Article  Google Scholar 

  5. Barretto, A.C., Sáez, M.B., Rico, M.R., and Jaureguizar, A.J., Age determination, validation, and growth of Brazilian flathead (Percophis brasiliensis) from the southwest Atlantic coastal waters (34–41°S), Lat. Am. J. Aquat. Res., 2011, vol. 39, no. 2, pp. 297–305. https://doi.org/10.3856/vol39-issue2-fulltext-11

    Article  Google Scholar 

  6. Bates, D.M. and Chambers, J.M., Nonlinear models, in Statistical Models in S, Chambers, J.M. and Hastie, T.J., Eds., Boca Raton, FL: CRC Press, 1991, pp. 421–454.

    Google Scholar 

  7. Battaglia, P., Malara, D., Romeo, T., and Andaloro, F., Relationships between otolith size and fish size in some mesopelagic and bathypelagic species from the Mediterranean sea (Strait of Messina, Italy), Sci. Mar., 2010, vol. 74, no. 3, pp. 605–612. https://doi.org/10.3989/scimar.2010.74n3605

    Article  Google Scholar 

  8. Belchier, M., Clemmesen, C., Cortes, D., Doan, T., Folkvord, A., Garcia, A., Geffen, A., Hoie, H., Johannessen, A., Moksness, E., de Pontual Ramirez, T., Schnack, D., and Sveinsbo, B., Recruitment Studies: Manual on Precision and Accuracy of Tools, ICES Techniques in Marine Environmental Sciences, No. 33, Copenhagen: Int. Counc. Explor. Sea, 2004. https://doi.org/10.25607/OBP-230.

  9. Bostanci, D., Otolith biometry-body length relationships in four fish species (Chub, Pikeperch, Crucian carp, and Common Carp), J. Freshwater Ecol., 2009, vol. 24, no. 4, pp. 619–624. https://doi.org/10.1080/02705060.2009.9664339

    Article  Google Scholar 

  10. Braicovich, P.E. and Timi, J.T., Parasites as biological tags for stock discrimination of the Brazilian flathead Percophis brasiliensis in the south-west Atlantic, J. Fish. Biol., 2008, vol. 73, no. 3, pp. 557–571. https://doi.org/10.1111/j.1095-8649.2008.01948.x

    Article  Google Scholar 

  11. Campana, S.E., Chemistry and composition of fish otoliths: pathways, mechanisms and applications, Mar. Ecol.: Prog. Ser., 1999, vol. 188, pp. 263–297. https://doi.org/10.3354/meps188263

    Article  CAS  Google Scholar 

  12. Campana, S.E. and Casselman, J.M., Stock discrimination using otolith shape analysis, Can. J. Fish. Aquat. Sci., 1993, vol. 50, no. 5, pp. 1062–1083. https://doi.org/10.1139/f93-123

    Article  Google Scholar 

  13. Campana, S.E. and Thorrold, S.R., Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can. J. Fish. Aqua. Sci., 2001, vol. 58, no. 1, pp. 30–38. https://doi.org/10.1139/f00-177

    Article  Google Scholar 

  14. Clack, J.A., Otoliths in fossil coelacanths, J. Vertebr. Paleontol., 1996, vol. 16, no. 1, pp. 168–171. https://doi.org/10.1080/02724634.1996.10011295

    Article  Google Scholar 

  15. Di Giácomo, E.E., Calvo, J., Perier, M.R., and Morriconi, E., Spawning aggregations of Merluccius hubbsi, in Patagonian waters: evidence for a single stock? Fish. Res., 1993, vol. 16, no. 1, pp. 9–16. https://doi.org/10.1016/0165-7836(93)90106-H

    Article  Google Scholar 

  16. Eleutério, C.L.T., Crescimento, idade e mortalidade do congrorosa Genypterus brasiliensis (Regan 1903) na região Sudeste e Sul do Brasil, PhD Thesis, São Paulo: Inst. Pesca, 2008.

  17. Francis, R.I.C.C., Back-calculation of fish length: a critical review, J. Fish. Biol., 1990, vol. 36, no. 6, pp. 883–902. https://doi.org/10.1111/j.1095-8649.1990.tb05636.x

    Article  Google Scholar 

  18. González, R.A., Age and growth of the Argentine sandperch Pseudopercis semifasciata (Cuvier, 1829) Berg, 1899 in the San Matías Gulf (Patagonia, Argentina), Fish. Res., 2006, vol. 79, nos. 1–2, pp. 120–128. https://doi.org/10.1016/j.fishres.2006.01.016

    Article  Google Scholar 

  19. González, R.A., Narvarte, M.A., and Caille, G.M., An assessment of the sustainability of the hake Merluccius hubbsi artisanal fishery in San Matías Gulf, Patagonia, Argentina., Fish. Res., 2007, vol. 87, no. 1, pp. 58–67. https://doi.org/10.1016/j.fishres.2007.06.010

    Article  Google Scholar 

  20. González, R.A., Narvarte, M.A., and Verona, C., Principios, Lineamientos Generales y Procedimientos para la Elaboración, Adopción, Implementación, Evaluación y Revisión de los Planes de Manejo Ecosistémico para la Pesca Marítima de Captura en el Golfo San Matías. ECOPES (Iniciativa para un Ecosistema Pesquero Sustentable), San Antonio Oeste: Inst. Biol. Mar. Pesquera Almirante Storni, Univ. Nac. Comahue, 2010.

  21. Gonzalez Naya, M.J., Tombari, A., Volpedo, A.V., and Gómez, S.E., Size related changes in sagitta otoliths of Australoheros facetus (Pisces; Cichlidae) from South America, J. Appl. Ichthyol., 2012, vol. 28, no. 5, pp. 725–755. https://doi.org/10.1111/j.1439-0426.2012.02006.x

    Article  Google Scholar 

  22. Granadeiro, J.P. and Silva, M.A., The use of otoliths and vertebrae in the identification and size-estimation of fish in predator-prey studies, Cybium, 2000, vol. 24, no. 4, pp. 383–393. http://sfi-cybium.fr/en/node/2326.

    Google Scholar 

  23. Hoffman, K.J. and Harding, J.M., Ontogeny of otolith formation in two demersal estuarine reef fishes, J. N. C. Acad. Sci., 2018, vol. 134, no. 3, pp. 1–9. https://doi.org/10.7572/JNCAS-D-17-00006.1

    Article  Google Scholar 

  24. Hunt, J.J., Morphological characteristics of otoliths for selected fish in the Northwest Atlantic, J. Northw. Atl. Fish. Sci., 1992, vol. 13, pp. 63–75. https://journal.nafo.int/Volumes/Articles/ID/174/Morphological-Characteristics-for-Otoliths-of-Selected-Fish-in-the-Northwest-Atlantic.

    Article  Google Scholar 

  25. Huxley, J.S., Constant differential growth-ratios and their significance, Nature, 1924, vol. 114, pp. 895–896. https://www.nature.com/articles/114895a0.

    Article  Google Scholar 

  26. Huxley, J.S., Problems of Relative Growth, New York: Dial Press, 1932.

    Google Scholar 

  27. Jarma, D., Romero, M.A., García, N.A., Svendsen, G., González, R., Dans, S.L., and Crespo, E.A., Small-scale variation in the diet of the South American Sea lion (Otaria flavescens) in northern Patagonia (Argentina), Reg. Stud. Mar. Sci., 2019, vol. 28, art. ID 100592. https://doi.org/10.1016/j.rsma.2019.100592

    Article  Google Scholar 

  28. Kanjuh, T., Mrdak, D., Piria, M., Tomljanović, T., Joksimović, A., Talevski, T., and Milošević, D., Relationships of otolith dimension with body length of European eel Anguilla anguilla (Linnaeus, 1758) from Adriatic catchment of Montenegro, Acta Adriat., 2018, vol. 59, no. 1, pp. 91–96. https://doi.org/10.32582/aa.59.1.7

    Article  Google Scholar 

  29. Koen Alonso, M. and Yodzis, P., Multispecies modeling of some components of the marine community of northern and central Patagonia, Argentina, Can. J. Fish. Aquat. Sci., 2005, vol. 62, no. 7, pp. 1490–1512. https://doi.org/10.1139/f05-087

    Article  Google Scholar 

  30. Koen Alonso, M., Crespo, E.A., García, N.A., Pedraza, S.N., and Coscarella, M., Diet of dusky dolphins, Lagenorhynchus obscurus, in waters off Patagonia, Argentina, Fish Bull., 1998, vol. 96, pp. 366–374. https://www.st.nmfs.noaa.gov/ spo/FishBull/962/alonso.pdf.

    Google Scholar 

  31. Koen Alonso, M., Crespo, E.A., Pedraza, S.N., García, N.A., and Coscarella, M.A., Food habits of the South American sea lion, Otaria flavescens, off Patagonia, Argentina, Fish Bull., 2000, vol. 98, no. 2, pp. 250–263. https://spo.nmfs. noaa.gov/sites/default/files/03_1.pdf.

    Google Scholar 

  32. Koen Alonso, M., Crespo, E.A., García, N.A., Pedraza, S.N., Mariotti, P.A., Berón Vera, B., and Mora, N.J., Food habits of Dipturus chilensis (Pisces: Rajidae) off Patagonia, Argentina, ICES J. Mar. Sci., 2001, vol. 58, no. 1, pp. 288–297. https://doi.org/10.1006/jmsc.2000.1010

    Article  Google Scholar 

  33. Koen Alonso, M., Crespo, E.A., García, N.A., Pedraza, S.N., Mariotti, P.A., and Mora, N.J., Fishery and ontogenetic driven changes in the diet of the spiny dogfish, Squalus acanthias, in Patagonian waters, Argentina, Environ. Biol. Fish., 2002, vol, 63, no. 2, pp. 193–202. https://link.springer.com/article/10.1023/A:1014229432375

  34. Libungan, L.A., Slotte, A., Husebø, Å., Godiksen, J.A., and Pálsson, S., Latitudinal gradient in otolith shape among local populations of Atlantic herring (Clupea harengus L.) in Norway, PloS One, 2015, vol. 10, no. 6, art. ID e0130847. https://doi.org/10.1371/journal.pone.0130847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lombarte, A. and Cruz, A., Otolith size trends in marine fish communities from different depth strata, J. Fish. Biol., 2007, vol. 71, no. 1, pp. 53–76. https://doi.org/10.1111/j.1095-8649.2007.01465.x

    Article  Google Scholar 

  36. Lombarte, A. and Lleonart, J., Otolith size changes related with body growth, habitat depth and temperature, Environ. Biol. Fish., 1993, vol. 37, no. 3, pp. 297–306. https://link.springer.com/article/10.1007/BF00004637.

  37. Lombarte, A., Chic, Ò., Parisi-Baradad, V., Olivella, R., Piera, J., and García-Ladona, E., A web-based environment from shape analysis of fish otoliths. The AFORO database, Sci. Mar., 2006, vol. 70, pp. 147–152. https://doi.org/10.3989/scimar.2006.70n1147

    Article  Google Scholar 

  38. Mille, T., Mahe, K., Villanueva, M.C., De Pontual, H., and Ernande, B., Sagittal otolith morphogenesis asymmetry in marine fishes, J. Fish. Biol., 2015, vol. 87, no. 3, pp. 646–663. https://doi.org/10.1111/jfb.12746

    Article  CAS  PubMed  Google Scholar 

  39. Munk, K.M., Somatic-Otolith Size Correlations for 18 Marine Fish. Species and Their Importance to Age Determination: Regional Information Report No. 5J12–13, Juneau, AK: Alaska Dep. Fish Game, 2012. http://www.adfg.alaska.gov/FedAidPDFs/RIR.5J.2012.13.pdf.

    Google Scholar 

  40. Nolf, D. and Tyler, H., Otolith evidence concerning interrelationship of caproid zeiform and tetradontiform fishes, Bull. Acad. R. Belg., 2006, vol. 76, pp. 147–189. http://biblio.naturalsciences.be/rbins-publications/bulletin-of-the-royal-belgian-institute-of-natural-sciences-biologie/76-2006/biologie-2006-76_147-189.pdf.

    Google Scholar 

  41. Núñez-Flores, M., Rincón, A.D., Solórzano, A., Sánchez, L., and Cáceres, C., Fish-otoliths from the early Miocene of the Castillo Formation, Venezuela: a view into the proto-Caribbean teleostean assemblages, Hist. Biol., 2017, vol. 29, no. 8, pp. 1019–1030. https://doi.org/10.1080/08912963.2017.1282474

    Article  Google Scholar 

  42. Ocampo Reinaldo, M., González, R., Williams, G., Storero, L.P., Romero, M.A., Narvarte, M., and Gagliardini, D.A., Spatial patterns of the Argentine hake Merluccius hubbsi and oceanographic processes in a semi-enclosed Patagonian ecosystem, Mar. Biol. Res., 2013, vol. 9, no. 4, pp. 394–406. https://doi.org/10.1080/17451000.2012.739700

    Article  Google Scholar 

  43. Packard, G.C., Is logarithmic transformation necessary in allometry? Biol. J. Linn. Soc. Lond., 2013, vol. 109, no. 2, pp. 476–486. https://doi.org/10.1111/bij.12038

    Article  Google Scholar 

  44. Parmentier, E., Boistel, R., Bahri, M.A., Plenevaux, A., and Schwarzhans, W., Sexual dimorphism in the sonic system and otolith morphology of Neobythites gilli (Ophidiiformes), J. Zool., 2018, vol. 305, no. 4, pp. 274–280. https://doi.org/10.1111/jzo.12561

    Article  Google Scholar 

  45. Paxton, J.R., Fish otoliths: do sizes correlate with taxonomic group, habitat and/ or luminescence? Philos. Trans. R. Soc., B, 2000, vol. 355, pp. 1299–1303. https://doi.org/10.1098/rstb.2000.0688

  46. Perez Comesaña, J.E., Clavin, P., Arias, K., and Riestra, C., Total length estimation of the Brazilian flathead Percophis brasiliensis, using morphometric relationships of skull, pectoral girdle bones, otoliths and specific body measures, in Argentine waters, J. Appl. Ichthyol., 2014, vol. 30, no. 2, pp. 377–380. https://doi.org/10.1111/jai.12244

    Article  Google Scholar 

  47. Pinheiro, J., Bates, D., DebRoy, S., and Sarkar, D., nlme: Linear and nonlinear mixed effects models, R package version 3.1-137, 2018. https://CRAN.R-project.org/package=nlme.

  48. Popper, A.N. and Fay, R.R., Sound detection and processing by fish: critical review and major research questions, Brain Behav. Evol., 1993, vol. 41, pp. 14–38. https://doi.org/10.1159/000113821

    Article  CAS  PubMed  Google Scholar 

  49. Popper, A.N., Ramcharitar, J.U., and Campana, S.E., Why otoliths? Insights from inner ear physiology and fisheries biology, Mar. Freshwater Res., 2005, vol. 56, pp. 497–504. https://doi.org/10.1071/MF04267

    Article  Google Scholar 

  50. Puentes-Granada, V., Rojas, P., Pavolini, G., Gutierrez, C.F., and Villa, AA., Morphology and morphometric relationships for sagitta otoliths in Lutjanus argentiventris (Pisces: Lutjanidae) and Hyporthodus acanthistius (Pisces: Serranidae) from the Colombian Pacific Ocean, Univ. Sci. (Bogota), 2019, vol. 24, no. 2, pp. 337–361. https://doi.org/10.11144/Javeriana.SC24-2.mamr

    Article  Google Scholar 

  51. R Core Team, R version 3.5.3 (2019-03-11)–“Great Truth,” R Foundation for Statistical Computing. https://www.r-project.org/. Accessed in 2019.

  52. Rodríguez Mendoza, R.P., Otoliths and their applications in fishery science, Ribarstvo, 2006, vol. 64, no. 3, pp. 89–102. https://hrcak.srce.hr/8984.

    Google Scholar 

  53. Romero, M.A., González, R.A., and Ocampo Reynaldo, M., Análisis histórico de la composición por especie de los desembarcos de la pesquería de arrastre demersal del Golfo San Matías: Identificación y caracterización de los ciclos productivos, IBMP Ser. Publ., 2008, vol. 7, pp. 1–25.

    Google Scholar 

  54. Romero, M.A., Dans, S., González, R., Svendsen, G., García, N., and Crespo, E., Solapamiento trófico entre el lobo marino de un pelo Otaria flavescens y la pesquería de arrastre demersal del Golfo San Matias, Patagonia, Argentina, Lat. Am. J. Aquat. Res., 2011, vol. 39, no. 2, pp. 344–358. https://doi.org/10.4067/S0718-560X2011000200016

    Article  Google Scholar 

  55. Romero, M.A., Dans, S.L., García, N., Svendsen, G.M., González, R., and Crespo, E.A., Feeding habits of two sympatric dolphin species off North Patagonia–Argentina, Mar. Mamm. Sci., 2012, vol. 28, no. 2, pp. 364–377. https://doi.org/10.1111/j.1748-7692.2011.00477.x

    Article  Google Scholar 

  56. Sánchez, F. and García de la Rosa, S.B., Alimentación de merluza (Merluccius hubbsi) e impacto del canibalismo en el área comprendida entre 34°47´–47°S del Atlántico Sudoccidental, Rev. Invest. Desarrollo Pesquero, 1999, vol. 12, pp. 77–93. https://www.oceandocs.org/bitstream/handle/1834/1874/Rev%20Invest%20Desarr%20Pesq%2012% 2077-93.pdf?sequence=1&isAllowed=y.

    Google Scholar 

  57. Scartascini, F.L. and Volpedo, A., White croaker (Micropogonias furnieri) paleodistribution in the Southwestern Atlantic Ocean. An archaeological perspective, J. Archaeol. Sci., 2013, vol. 40, pp. 1059–1062. https://doi.org/10.1016/j.jas.2012.08.032

    Article  Google Scholar 

  58. Schulz-Mirbach, T., Ladich, F., Plath, M., and Heß, M., Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths, Biol. Rev., 2019, vol. 94, no. 2, pp. 457–482. https://doi.org/10.1111/brv.12463

    Article  PubMed  Google Scholar 

  59. Souza, G.M.D., Tubino, R.D.A., Monteiro-Neto, C., and Costa, M.R.D., Relationships between fish and otolith dimensions of Pomatomus saltatrix (Linnaeus, 1766) (Perciformes: Pomatomidae) in southeastern Brazil, Neotrop. Ichthyol., 2019, vol. 17, art. ID e180032. https://doi.org/10.1590/1982-0224-20180032

    Article  Google Scholar 

  60. Stringer, G.L., A study of the upper Eocene otoliths of the Yazoo Clay in Caldwell Parish, Louisiana, Tulane Stud. Geol. Paleontol., 1979, vol. 15, no. 3, pp. 95–105. http://journals.tulane.edu/index.php/tsgp/article/view/757.

  61. Stringer, G.L., Late Pleistocene–early Holocene teleostean otoliths from a Mississippi River mudlump, J. Vertebr. Paleontol., 1992, vol. 12, no. 1, pp. 33–41. https://doi.org/10.1080/02724634.1992.10011429

    Article  Google Scholar 

  62. Sturrock, A.M., Trueman, C.N., Darnaude, A.M., and Hunter, E., Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? J. Fish. Biol., 2012, vol. 81, no. 2, pp. 766–795. https://doi.org/10.1111/j.1095-8649.2012.03372.x

    Article  CAS  PubMed  Google Scholar 

  63. Torres, G.J., Lombarte, A., and Morales-Nin, B., Sagittal otolith size and shape variability to identify geographical intraspecific differences in three species of the genus Merluccius,J. Mar. Biol. Assoc. U.K., 2000, vol. 80, pp. 333–342. https://doi.org/10.1017/S0025315499001915

    Article  Google Scholar 

  64. Timi, J.T. and Lanfranchi, A.L., The metazoan parasite communities of the Argentinean sandperch Pseudopercis semifasciata (Pisces: Perciformes) and their use to elucidate the stock structure of the host, Parasitology, 2009, vol. 136, no. 10, pp. 1209–1219. https://doi.org/10.1017/S0031182009990503

    Article  CAS  PubMed  Google Scholar 

  65. Tuset, V.M., Lozano, I.J., González, J.A., Pertusa, J.F., and García-Díaz, M.M., Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758), J. Appl. Ichthyol., 2003, vol. 19, no. 2, pp. 88–93. https://doi.org/10.1046/j.1439-0426.2003.00344.x

    Article  Google Scholar 

  66. Tuset, V.M., Lombarte, A., and Assis, C.A., Otolith atlas for the Western Mediterranean, North and Central Eastern Atlantic, Sci. Mar., 2008, vol. 72, suppl. 1, pp. 7–198. https://doi.org/10.3989/scimar.2008.72s17

    Article  Google Scholar 

  67. Tuset, V.M., Piretti, S., Lombarte, A., and González, J.A., Using sagittal otoliths and eye diameter for ecological characterization of deep-sea fish: Aphanopus carbo and A. intermedius from NE Atlantic waters, Sci. Mar., 2010, vol. 74, no. 4, pp. 807–814. https://doi.org/10.3989/scimar.2010.74n4807

    Article  Google Scholar 

  68. Vaz-dos-Santos, A.M. and Rossi-Wongtschowski, C.L.D., Age and growth of the Argentine hake Merluccius hubbsi Marini, 1933 in the Brazilian South-Southeast Region during 1996-2001, Neotrop. Ichthyol., 2007, vol. 5, no. 3., pp. 375–386. https://doi.org/10.1590/S1679-62252007000300017

    Article  Google Scholar 

  69. Vignon, M., Ontogenetic trajectories of otolith shape during shift in habitat use: Interaction between otolith growth and environment, J. Exp. Mar. Biol. Ecol., 2012, vol. 420, pp. 26–32. https://doi.org/10.1016/j.jembe.2012.03.021

    Article  Google Scholar 

  70. Vignon, M. and Morat, F., Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish, Mar. Ecol.: Prog. Ser., 2010, vol. 411, pp. 231–241. https://doi.org/10.3354/meps08651

    Article  Google Scholar 

  71. Volpedo, A.V. and Echeverría, D.D., Catálogo y Claves de Otolitos para la Ientificación de Peces del Mar Argentine, Vol. 1: Peces de Importancia Económica, Buenos Aires: Dunken, 2000.

    Google Scholar 

  72. Volpedo, A.V. and Echeverría, D.D., Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine, Fish. Res., 2003, vol. 60, pp. 551–560. https://doi.org/10.1016/S0165-7836(02)00170-4

    Article  Google Scholar 

  73. Volpedo, A.V., Tombari, A.D., and Echeverría, D.D., Eco-morphological patterns of the sagitta of Antarctic fish, Polar Biol., 2008, vol. 31, no. 5, pp. 635–640. https://doi.org/10.1007/s00300-007-0400-1

    Article  Google Scholar 

  74. Waessle, J.A., Lasta, C.A., and Favero, M., Otolith morphology and body size relationships for juvenile Sciaenidae in the Río de la Plata estuary (35–36°S), Sci. Mar., 2003, vol. 67, no. 2, pp. 233–240. https://doi.org/10.3989/scimar.2003.67n2233

    Article  Google Scholar 

  75. Xiao, X., White, E.P., Hooten, M.B., and Durham, S.L., On the use of log-transformation vs. nonlinear regression for analyzing biological power laws, Ecology, 2011, vol. 92, no. 10, pp. 1887–1894. https://doi.org/10.1890/11-0538.1

    Article  PubMed  Google Scholar 

  76. Yilmaz, S., Yazicioglu, O., Saygin, S., and Polat, N. Relationships of otolith dimensions with body length of European perch, Perca fluviatilis L., 1758 from Lake Ladik, Turkey, Pak. J. Zool., 2014, vol. 46, no. 5, pp. 1231–1238. http://zsp.com.pk/pdf46/1231-1238%20(6)%20PJZ-1678-14%208-9-14%20S_Yilmaz_revised_manuscript.pdf.

    Google Scholar 

  77. Zar, J.H., Biostatistical Analysis, Delhi: Pearson, 2009.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge to the people who collaborated in obtaining and processing the samples. This study was carried out thanks to the logistical support of the Escuela Superior de Ciencias Marinas of the Universidad Nacional del Comahue.

Funding

This work was supported by the projects “Elaboración y ejecución de programas para definiciones de planes de manejo de recursos de la pesca en la Plataforma Continental Argentina” STAN CONICET (ST 2872), PICT-2014-1671 and PICT-2015-0534. MAR, NSR and RAG are supported by CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Romero.

Ethics declarations

Conflict of interest. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Statement of the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, M.A., Ruiz, N.S., Medina, A.I. et al. Biometric Relationships between Otolith and Fish Size of the Main Demersal Resources of North Patagonia, Argentina. J. Ichthyol. 60, 411–421 (2020). https://doi.org/10.1134/S0032945220030157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945220030157

Keywords:

Navigation