Skip to main content
Log in

Primary Colloids at Hydrothermally Modifed Aluminophosphate Glass with Imitators of Radionuclides

  • Published:
Radiochemistry Aims and scope

Abstract

In Russia, highly active wastes (HAWs) from nuclear power engineering are incorporated in Na–Al–P glass (matrix) for final deposition in a geological repository at a depth of about 500 m. The reliability of such a repository is largely determined by the stability of the HAW matrix in underground water and by its ability to firmly retain radionuclides during the whole time of their being hazardous. Electron microscopy was used to examine the composition and structure of colloid particles formed in the interaction of water with a glass and products of its crystallization at 95°C. To isolate particles, solutions were passed after an experiment through filters with pore size decreasing from 450 to 25 nm. The colloids were represented by Na and Al or Sr, Ln, and U phosphates, with their particle size exceeding 200 nm. The migration of colloids from a repository can be restricted by a barrier based on densified bentonite because particles can be mechanically retained due to the low permeability of rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Kersting, A.B., Radionuclide Behaviour in the Natural Environment. Science, Implications and Lessons for the Nuclear Industry, Poinssot, Ch. and Geckeis, H., Eds., Oxford: Woodhead Publishing, 2012.

    Google Scholar 

  2. Kim, J.I., Radiochim. Acta, 1991, vol. 52, no. 3, p. 71.

    Google Scholar 

  3. Siegel, M.D. and Bryan, C.R., Treatise on Geochemistry, Holland, H.D. and Turekian, K.K., Eds., New York: Elsevier, 2003.

    Google Scholar 

  4. Romanchuk, A.Yu., Kalmykov, S.N., Kersting, A.B., and Zavarin, M., Russ. Chem. Rev., 2016, vol. 85, no. 9, p. 995. https://doi.org/10.1070/RCR4602

    Article  CAS  Google Scholar 

  5. Lead, J.R., Davison, W., Hamilton-Taylor, J. and Buffle, J., Aquat. Geochem., 1997, vol. 3, p. 213.

    CAS  Google Scholar 

  6. Lead, J.R. and Wilkinson, K.J., Environmental Colloids and Particles: Behaviour, Separation and Characterisation, Wilkinson, K.J. and Lead, J.R., Eds., New York: Wiley, 2007.

    Google Scholar 

  7. Hauser, W., Geckeis, H., Götz, R., Noseck, U., and Laciok, A., Fundamental Processes of Radionuclide Migration in Salt Rock Far Field, A Natural Analogue Study (FUNMIG), GRS-255, 2009, p. 55.

    Google Scholar 

  8. Kretzschmar, R. and Schäfer, Th., Elements, 2005, vol. 1, no. 4, p. 205.

    CAS  Google Scholar 

  9. Vilks, P., Miller, H.G., and Doern, D.C., Appl. Geochem., 1991, vol. 6, p. 565–574.

    CAS  Google Scholar 

  10. Dubasov, Yu.V., Smirnova, E.A., and Malimonova, S.I., Radiochemistry, 2012, vol. 54, no. 3., p. 274. https://doi.org/10.1134/S1066362212030149

    Article  CAS  Google Scholar 

  11. Kersting, A.B., Efurd, D.W., Finnegan, D.L., Rokop, D.J., Smith, D.K., and Thompson, J.L., Nature, 1999, vol. 397, p. 56.

    CAS  Google Scholar 

  12. Traexler, K.A., Utsunomiya, S., Kersting, A.B., and Ewing, R.C., Mater. Res. Soc. Symp. Proc., 2004, vol. 807, p. 653.

    CAS  Google Scholar 

  13. Toropov, A.S., Cand. Sci. (Geol. Mineral.) Dissertation, 2018.

  14. Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., Ewing, R.C., Horreard, F., Merkulov, A., Clark, S.B., Tkachev, V.V., and Myasoedov, B.F., Science, 2006, vol. 314, p. 638.

    CAS  PubMed  Google Scholar 

  15. Laverov, N.P., Velichkin, V.I., Mal’kovskii, V.I., Tarasov, N.N., and Dikov, Yu.P., Geol, Rudn. Mestorozhd., 2010, vol. 52, no. 1, p. 7.

    CAS  Google Scholar 

  16. Batuk, O.N., Conradson, S.D., Aleksandrova, O.N., Boukhalfa, H., Burakov, B.E., Clark, D.L., Czerwinski, K.R., Felmy, A.R., Lezama-Pacheco, J.S., Kalmykov, S.N., Moore, D.A., Myasoedov, B.F., Reed, D.T., Reilly, D.D., Roback, R.C., Vlasova, I.E., Webb, S.M., and Wilkerson, M.P., Environ. Sci. Technol., 2015, vol. 49, no. 11, p. 6474.

    CAS  PubMed  Google Scholar 

  17. Myasoedov, B.F. and Kalmykov, S.N., Mendeleev Commun., 2015, vol. 25., p. 319.

    CAS  Google Scholar 

  18. Bates, J.K., Seitz, M.G., and Steindler, J., Nucl. Chem. Waste Manage, 1984, vol. 5, p. 63.

    CAS  Google Scholar 

  19. Buck, E.C. and Bates, J.K., Appl. Geochem., 1999, vol. 14, p. 635.

    CAS  Google Scholar 

  20. Contardi, J.S., Turner, D.R., and Ahn, T.M., J. Contam. Hydrol., 2001, vol. 47, p. 323.

    CAS  PubMed  Google Scholar 

  21. Laverov, N.P., Velichkin, V.I., Omel'yanenko, B.I., Yudintsev, S.V., Petrov, V.A., and Bychkov, A.V., Izolyatsiya otrabotavshikh yadernykh materialov: geologo-geokhimicheskie osnovy (Isolation of Spent Nuclear Materials: Geological-Geochemical Fundamentals), Moscow: Inst. Fiz. Zemli Ross. Akad. Nauk, 2008.

    Google Scholar 

  22. Apted, M. and Ahn, J., Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, Ahn, J. and Apted, M.J., Eds., New York: Woodhead, 2010.

    Google Scholar 

  23. Laverov, N.P., Yudintsev, S.V., Kochkin, B.T., and Malkovsky, V.I., Elements, 2016, vol. 12, no. 4, p. 253.

    CAS  Google Scholar 

  24. Radioactive Waste Forms for the Future, Lutze, W. and Ewing, R.C., Eds., New York: Elsevier, 1988.

    Google Scholar 

  25. Fosfatnye stekla s radioaktivnymi otkhodami (Phosphate Glasses with Radioactive Wastes), Vashman, A.A. and Polyakov, A.S., Eds., Moscow: Tsniiatominform, 1997.

    Google Scholar 

  26. Donald, I.W., Waste Immobilization in Glass and Ceramic Based Hosts: Radioactive, Toxic and Hazardous Wastes, Chichester: Wiley, 2010.

    Google Scholar 

  27. Stefanovsky, S.V., Stefanovsky, O.I., Remizov, M.B., Kozlov, P.V., Belanova, E.A., Makarovsky, R.A., and Myasoedov, B.F., Prog. Nucl. Energy, 2017, vol. 94, p. 229.

    CAS  Google Scholar 

  28. Martynov, K.V., Nekrasov, A.N., Kotelnikov, A.R., Shiryaev, A.A., and Stefanovsky, S.V., Glass Phys. Chem., 2018, vol. 44, no. 6, p. 591.

    CAS  Google Scholar 

  29. Diomidis, N. and Johnson, L.H., J. Miner., Met. Mater. Soc., 2014, vol. 66, no. 3, p. 461.

    CAS  Google Scholar 

  30. Drobyshevskii, N.I., Moiseenko, E.V., Butov, R.A., and Tokarev, Yu.N., Radioakt. Otkhody, 2017, no. 1, p. 65.

    Google Scholar 

  31. Kochkin, B.T., Mal’kovskii, V.I., and Yudintsev, S.V., Nauchnye osnovy otsenki bezopasnosti geologicheskoi izolyatsii dolgozhivushchikh radioaktivnykh otkhodov (Eniseiskii proekt) [Scientific Foundations of Evaluating the Safety of the Geological Isolation of Long-Lived Radioactive Wastes (Enisei Project)], Moscow: Institute of Ore Deposit Geology, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, 2017.

    Google Scholar 

  32. Aleksandrova, E.V., Mal’kovskii, V.I., and Yudintsev, S.V., Dokl. Akad. Nauk, 2018, vol. 482, no. 6, p. 693.

    Google Scholar 

  33. Yudintsev, S.V., Pervukhina, A.M., Mokhov, A.V., Mal’kovskii, V.I., and Stefanovskii, S.V., Dokl. Akad. Nauk, 2017, vol. 473, no. 4, p. 477.

    Google Scholar 

  34. Poluektov, P.P., Schmidt, O.V., Kascheev, V.A., and Ojovan, M.I., J. Nucl. Mater., 2017, vol. 484, p. 357.

    CAS  Google Scholar 

  35. Vlasova, N.V., Remizov, M.B., Kozlov, P.V., and Belanova, E.A., Vopr. Radiats. Bezop., 2017, no. 3, p. 32.

    Google Scholar 

  36. Remizov, M.B., Kozlov, P.V., Borisenko, V.P., Dement’eva, I.I., Blokhin, P.A., and Samoilov, A.A., Radioakt. Otkhody, 2018, no. 3, p. 102.

    Google Scholar 

  37. Dorofeev, A.N., Bol’shov, L.A., Linge, I.I., Utkin, S.S., and Savel’eva, E.A., Radioakt. Otkhody, 2017, no. 1, p. 33.

    Google Scholar 

  38. Gin, S., Abdelouas, A., Criscenti, L.J., Ebert, W.L., Ferrand, K., Geisler, T., Harrison, M.T., Inagaki, Y., Mitsui, S., Mueller, K.T., Marra, J.C., Pantano, C.G., Pierce, E.M., Ryan, J.V., Schofield, J.M., Steefel, C.I., and Vienna, J.D., Mater. Today, 2013, vol. 16, no. 6, p. 243.

    CAS  Google Scholar 

  39. Gin, S., Procedia Mater. Sci., 2014, vol. 7, p. 163.

    CAS  Google Scholar 

  40. Yudintsev, S.V., Mal’kovskii, V.I., and Mokhov, A.V., Dokl. Akad. Nauk, 2016, vol. 468, no. 2, p. 196.

    Google Scholar 

  41. Frugier, P., Minet, Y., Rajmohan, N., Godon, N., and Gin, S., NPJ Mater. Degrad., 2018, vol. 35, p. 1.

    Google Scholar 

  42. Jantzen, C.M., Kaplan, D.I., Bibler, N.E., Peeler, D.K., and Plodinec, M.J., J. Nucl. Mater., 2008, vol. 378, p. 244.

    CAS  Google Scholar 

  43. Aloi, A.S., Trofimenko, A.V., Kol’tsova, T.I., and Nikandrova, M.V., Radiochemistry, 2012, vol. 54, no. 3, p. 291. https://doi.org/10.1134/S1066362212030149

    Article  CAS  Google Scholar 

  44. Guittonneau, C., Gin, S., Godon, N., Mestre, J.P., Dugne, O., and Allegri, P., J. Nucl. Mater., 2011, vol. 408, p. 73.

    CAS  Google Scholar 

  45. Collin, M., Fournier, M., Charpentier, T., Moskura, M., and Gin, S., NPJ Mater. Degrad., 2018, vol. 16, p. 1.

    Google Scholar 

  46. Gin, S., Jollivet, P., Tribet, M., Peuget, S., and Schuller, S., Radiochim. Acta, 2017, vol. 105, no. 11, p. 927.

    CAS  Google Scholar 

  47. Frankel, G.S., Vienna, J.D., Lian, J., Scully, J.R., Gin, S., Ryan, J.V., Wang, J., Kim, S.H., Windl, W., and Du, J., NPJ Mater. Degrad., 2018, vol. 15, p. 1.

    Google Scholar 

  48. Kotova, N.P., Cand. Sci. (Chemistry) Dissertation, Moscow: Inst. Geokhim. Analyt. Khim., Ross. Akad. Nauk, 2001.

  49. Poinssot, Ch., Fillet, C., and Gras, J.-M., Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, Ahn, J. and Apted, M.J., Eds., New York: Woodhead, 2010.

    Google Scholar 

  50. Pirlet, V., J. Nucl. Mater., 2001, vol. 298, p. 47.

    CAS  Google Scholar 

  51. Pierce, E.M., McGrail, B.P., Martin, P.F., Marra, J., Arey, B.W., and Geiszler, K.N., Appl. Geochem., 2007, vol. 22, p. 1841.

    CAS  Google Scholar 

  52. Inagaki, Y., Sakata, H., Furuya, H., Idemitsu, K., Arima, T., Banba, T., Maeda, T., Matsumoto, S., Tamura, Y., and Kikkawa, S., Mater. Res. Soc. Symp. Proc., 1998, vol. 506, p. 177.

    CAS  Google Scholar 

  53. . Mal’kovskii, V.I., Yudintsev, S.V., and Aleksandrova, E.V., Radiochemistry, 2018, vol. 60, no. 6, p. 648. https://doi.org/10.1134/S1066362218060140

    Article  Google Scholar 

  54. Radioaktivnye veshchestva (Radioactive Substances), Il’in, L.A. and Filin, V.A., Eds., Leningrad: Khimiya, 1990.

    Google Scholar 

  55. Normy radiatsionnoi bezopasnosti NRB-99/2009 (Radiation Safety Regulations NRB-99/2009, Rossiiskaya gazeta. Federal Issue, 2009., no. 171.

  56. Compendium of Dose Coefficients Based on ICRP Publication 60, 2012, ICRP Publication 119, Ann. ICRP 41.

  57. Westlen, D., Prog. Nucl. Energy, 2007, vol. 49, p. 597.

    CAS  Google Scholar 

  58. Actinide and Fission Product Partitioning and Transmutation, Paris: NEA OECD, 2001.

  59. Babaev, N.S., Ochkin, A.V., Glagolenko, Yu.V., Dzekun, E.G., and Rovnyi, S.I., At. Energ., 2003, vol. 94, no. 5, p. 353.

    Google Scholar 

  60. Gerasimov, A.S. and Kiselev, G.V., Usp. Fiz. Nauk, 2003, vol. 173, no. 7, p. 739.

    Google Scholar 

  61. Project Opalinus Clay: Safety Report,. Demonstration of Disposal Feasibility for Spent Fuel, Vitrified High-Level Waste and Long-Lived Intermediate-Level Waste, Wettingen: Nagra Technical Report NTB 02-05, 2002.

  62. . Lessons Learnt from Ten Performance Assessment Studies, Paris: NEA OECD, 1997.

  63. Sullivan, V.S., Bowers, D.L., Clark, M.A., Graczyk., D.G., Tsai, Y., Streets, W.E., Pol Vander, M.H., and Billone, M.C., J. Radioanal. Nucl. Chem., 2008, vol. 277, no. 1, p. 59.

    CAS  Google Scholar 

  64. Pusch, R., Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, Ahn, J. and Apted, M.J., Eds., New York: Woodhead, 2010.

    Google Scholar 

  65. Mallants, D., Marivoet, J., and Sillen, X., J. Nucl. Mater., 2001, vol. 298, p. 125.

    CAS  Google Scholar 

  66. Van Iseghem, P., Lemmens, K., and Pirlet, V., Proc. Workshop “Mobile Fission and Activation Products in Nuclear Waste Diposal,” La Baule (France), Jan. 16–19, 2007. Paris: OECD EA, 2009, p. 247.

  67. Mokrov, Yu.G. and Aleksakhin, A.I., Vopr. Radiats. Bezop., 2018, no. 4, p. 13.

    Google Scholar 

  68. Batorshin, G.Sh., Kirillov, S.N., Smirnov, I.V., Sarychev, G.A., Tananaev, I.G., and Fedorova, O.V., Vopr. Radiats. Bezop., 2015, no. 3, p. 30.

    Google Scholar 

  69. Albarran, N., Missana, T., Alonso, U., García-Gutiérrez, M., and Lopez-Torrubia, T., Proc. 4th Ann. Workshop “Fundamental Processes of Radionuclide Migration” (FUNMIG), Karlsruhe: Forschungszentrum, 2009, p. 417.

    Google Scholar 

  70. Malkovsky, V.I. and Pek, A.A., Transp. Porous Media, 2009, vol. 78, p. 277.

    CAS  Google Scholar 

  71. Anderson, E.B., Rogozin, Yu.M., Smirnov, E.A., Bryzgalova, R.V., Malimonova, S.I., Andreeva, N.R., Shabalev, S.I., and Savonenkov, V.G., Radiochemistry, 2009, vol. 51, no. 5, p. 542. https://doi.org/10.1134/S1066362209050191

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out under the project “Effect of a colloidal transfer of radionuclide on the safety of of a HAW repository,” program 14P of the Presidium of the Russian Academy of Sciences “Physical chemistry of adsorption phenomena and actinide nanoparticles” (coordinator Acad. A.Yu. Tsivadze). The analysis of colloidal particles in experiments with crystallized glass was made under the project of the Russian Science Foundation no. 17-77-10119 “Study of the stability of aluminophosphate glasses used to immobilize radioactive wastes,” headed by E.V. Aleksandrova. The solution compositions after experiments were determined at the Collective Use Center (IGEM-Analitika) under a research project from the State assignment to IGEM Russian Academy of Sciences.

The authors are grateful to S.V. Stefanovskii for glass samples, B.R. Tagirov for assistance in experiments and B.S. Nikonov, M.S. Nikol’skii, A.V. Mokhov, and Ya.V. Bychkova for performing an analysis of the composition of solid samples and solutions by electron microscopy and ICP-MS.

The authors wish to thank the referee for attentively reading the manuscript and making helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Yudintsev.

Ethics declarations

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudintsev, S.V., Mal’kovskii, V.I. & Aleksandrova, E.V. Primary Colloids at Hydrothermally Modifed Aluminophosphate Glass with Imitators of Radionuclides. Radiochemistry 62, 411–423 (2020). https://doi.org/10.1134/S1066362220030157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220030157

Keywords:

Navigation