Skip to main content
Log in

Separation of Thorium Ions Using Synthesized Zeolite–Phosphate Composite from Sulfate Solution

  • Published:
Radiochemistry Aims and scope

Abstract

Zeolite modified with phosphate (Z/P) was synthesized and tested for Th4+ adsorption. The optimum adsorption conditions are as follows: pH 3.5, contact time of 30 min, 0.1 g of Z/P, initial Th4+ concentration of 400 mg/L, 20% tributyl phosphate (TBP) in toluene as solvent, and room temperature. Kinetics and equilibrium parameters of the Th4+ adsorption onto Z/P were determined. The maximum sorption capacity determined using the Langmuir model reached 92.59 mg/g. The Th4+ adsorption onto Z/P follows a pseudo-second-order kinetic model. Th4+ can be efficiently desorbed from the loaded Z/P with 1 M HNO3 solution. The optimized conditions were applied to the thorium adsorption from a conglomerate sandstone sample of Abu El Toyour, eastern side of Wadi El Sahu, Southwestern Sinai, Egypt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Ozay, O., Ekici, S., Aktas, N., and Sahiner, N., J. Environ. Manag., 2011, vol. 92, pp. 3121–3129. https://doi.org/10.1016/j.jenvman.2011.08.004

    Article  CAS  Google Scholar 

  2. Attallah, M.F., Hassan, H.S., and Youssef, M.A., Appl. Radiat. Isot., 2019, vol. 147, pp. 40–47. https://doi.org/10.1016/j.apradiso.2019.01.015

    Article  CAS  PubMed  Google Scholar 

  3. Osmanlioglu, A.E., J. Hazard. Mater., 2006, vol. 137, no. 1, pp. 332–335. https://doi.org/10.1016/j.jhazmat.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  4. Munthali, M.W., Johan, E., Aono, H., and Matsue, N., J. Asian Ceram. Soc., 2015, vol. 3, no. 3, pp. 245–250. https://doi.org/10.1016/j.jascer.2015.04.002

    Article  Google Scholar 

  5. Peric, J., Trgo, M., and Vukojevic, N.M., Water Res., 2004, vol. 38, no. 7, pp. 1893–1899. https://doi.org/10.1016/j.watres.2003.12.035

    Article  CAS  PubMed  Google Scholar 

  6. Choi, H.J., Yu, S.W., and Kim, K.H., J. Taiwan Inst. Chem. Eng., 2016, vol. 63, pp. 482–489. https://doi.org/10.1016/j.jtice.2016.03.005

    Article  CAS  Google Scholar 

  7. Yamaguchi, N., Taniyama, I., Kimura, T., Yoshioka, K., and Saito, M., J. Soil Sci. Plant Nutrit., 2016, vol. 62, no. 3, pp. 303–314. https://doi.org/10.1080/00380768.2016.1196119

    Article  CAS  Google Scholar 

  8. Ramesh, K. and Damodar, R.D., Adv. Agron., 2011, vol. 113, pp. 219–241. https://doi.org/10.1016/B978-0-12-386473-4.00004-X

    Article  Google Scholar 

  9. Cinar, S. and Baykal, B.B., Water Sci. Technol., 2005, vol. 51, no. 11, pp. 71–77. https://doi.org/10.2166/wst.2005.0392

    Article  CAS  PubMed  Google Scholar 

  10. Tsitsishvili, V., Dolaberidze, N., Urotadze, S., Alelishvili, M., Mirdzveli, N., and Nijaradze, M., Chem. J. Mold. Gen., Ind. Ecol. Chem., 2017, vol. 12, no. 1, pp. 95–101. https://doi.org/10.19261/cjm.2017.413

    Article  CAS  Google Scholar 

  11. Boruntea, C.R., Lundegaard, L.F., Corma, A., and Vennestrøm, P.N.R., Micropor. Mesopor. Mater., 2019, vol. 278, pp. 105–114. https://doi.org/10.1016/j.micromeso.2018.11.002

    Article  CAS  Google Scholar 

  12. Tran, Y.T., Lee, J., Kumar, P., Kim, K., and Lee, S.S., Composites, Part B, 2019, vol. 165, pp. 354–364. https://doi.org/10.1016/j.compositesb.2018.12.084

    Article  CAS  Google Scholar 

  13. Sharma, P., Han, M.H., and Cho, C.H., J. Nanomater., 2015, pp. 1–9. https://doi.org/10.1155/2015/912575

    Article  CAS  Google Scholar 

  14. Rhodes, C.J., Sci. Prog., 2010, vol. 93, no. 3, pp. 223–284. https://doi.org/10.3184/003685010X12800828155007

    Article  CAS  PubMed  Google Scholar 

  15. Marczenko, Z., Separation and Spectrophotometric Determination of Elements, New York: Horwood, 1986.

    Google Scholar 

  16. Shapiro, L. and Brannock, W.W., US Geol. Survey Bull., 1962, vol. 114., pp. 51–53. https://doi.org/10.3133/b1144A

  17. Govindaraju, K., Mevelle, C., and Chouard, C., Anal. Chem., 1976, vol. 48, pp. 1325–1331. https://doi.org/10.1021/ac50003a018

    Article  CAS  Google Scholar 

  18. Hrabovec, N., PP Zeolite Tuff: Final Report, 1985, no. K 12-526-056.

  19. Ammar, F.A., El Sayed, A.A., Alshami, A.S., and Khalaf, M.A., Sci. J. Fac. Sci., Minoufiya Univ., 2007, vol. 21, pp. 39–48.

    Google Scholar 

  20. Hassan, M.M., El Gohary, A.M., and Karish, A.I., Egypt. J. Geol., 2013, vol. 57, pp. 355–363.

    Google Scholar 

  21. Alshami, A.S., Nucl. Sci. Sci. J., 2018, vol. 7, pp. 31–55.

    Google Scholar 

  22. Dong, J. and Ozaki, Y., Macromolecules, 1997, vol. 30, pp. 286–292. https://doi.org/10.1021/ma9607168

    Article  CAS  Google Scholar 

  23. Ferrah, N., Abderrahim, O., Didi, M.A., and Villemin, D., J. Radioanal. Nucl. Chem., 2011, vol. 289, pp. 721–730. https://doi.org/10.1007/s10967-011-1172-1

    Article  CAS  Google Scholar 

  24. Zhou, H. and Chen, Y., Rare Met., 2010, vol. 29, pp. 333–338. https://doi.org/10.1007/s12598-010-0059-6

    Article  CAS  Google Scholar 

  25. Langmuir, D. and Herman, J.S., Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 1753–1766. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  26. Sprynskyy, M., Gadzała-Kopciuch, R., Nowak, K., and Buszewski, B., Colloids Surf., 2011, vol. 94, pp. 7–14. https://doi.org/10.1016/j.colsurfb.2011.12.024

    Article  CAS  Google Scholar 

  27. Wang, H., Yuan, X., Wu, Y., Huang, H., Zeng, G., Liu, Y., Wang, X., and Lin, N.Q.Y., Appl. Surf. Sci., 2013, vol. 279, pp. 432–440. https://doi.org/10.1016/j.apsusc.2013.04.133

    Article  CAS  Google Scholar 

  28. Torapava, N., Persson, I., Eriksson, L., and Lundberg, D., Inorg. Chem., 2009, vol. 48, pp. 11712–11723. https://doi.org/10.1021/ic901763s

    Article  CAS  PubMed  Google Scholar 

  29. Atlas of Eh–pH diagrams: intercomparison of thermodynamic databases, Geological Survey of Japan Open File Report, National Inst. of Advanced Industrial Science and Technology Research Center for Deep Geological Environments, 2005, no. 419.

  30. Saxena, S., Prasad, M., and Souza, S.F.D., Ind. Eng. Chem. Res., 2006, vol. 45, pp. 9122–9128. https://doi.org/10.1021/ie060378r

    Article  CAS  Google Scholar 

  31. Chen, C. and Wang, X., Appl. Geochem., 2007, vol. 22, pp. 436–445. https://doi.org/10.1016/j.apgeochem.2006.11.010

    Article  CAS  Google Scholar 

  32. Chen, C. and Wang, X., Appl. Radiat. Isot., 2007, vol. 65, pp. 155–163. https://doi.org/10.1016/j.apradiso.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  33. Gado, M. and Zaki, S., Int. J. Waste Res., 2016, vol. 6, no. 1, pp. 194–201. https://doi.org/10.4172/2252-5211.1000194

    Article  Google Scholar 

  34. Singh, D.K., Garg, S.K., and Bharadwaj, R.K., Indian J. Environ. Prot., 2001, vol. 21, pp. 604–610. https://www.researchgate.net/publication/279893411

    CAS  Google Scholar 

  35. Mishra, S.P., Ganga, P., Raju, A., and Mira, D., J. Chem. Pharm. Res., 2012, vol. 4, no. 2, pp. 1207–1216.

    CAS  Google Scholar 

  36. Sharma, I. and Goyal, D., J. Sci. Ind. Res., 2009, vol. 68, pp. 640–646. http://hdl.handle.net/123456789/4427.

    CAS  Google Scholar 

  37. Firas, S.A., Adv. Natur. Appl. Sci., 2013, vol. 7, no. 3, pp. 336–344.

    Google Scholar 

  38. Miraoui, A. and Didi, M.A., Eur. Chem. Bull., 2015, vol. 4, no. 11, pp. 512–521. https://doi.org/10.17628/ECB.2015.4.512

    Article  CAS  Google Scholar 

  39. Das, D.P., Das, J., and Parida, K., Colloid Interface Sci., 2003, vol. 261, pp. 213–220. https://doi.org/10.1016/S0021-9797(03)00082-1

    Article  CAS  Google Scholar 

  40. Liao, X.P. and Shi, B., Environ. Sci. Technol., 2005, vol. 39, pp. 4628–4632. https://doi.org/10.1021/es0479944

    Article  CAS  PubMed  Google Scholar 

  41. Chaudhary, N. and Balomajumder, C., Taiwan Inst. Chem. Eng., 2014, vol. 45, pp. 852–859. https://doi.org/10.1016/j.jtice.2013.08.016

    Article  CAS  Google Scholar 

  42. Kannamba, B., Reddy, K.L., and Apparao, B.V., J. Hazard. Mater., 2010, vol. 175, pp. 935–948. https://doi.org/10.1016/j.jhazmat.2009.10.098

    Article  CAS  Google Scholar 

  43. Chabani, M., Amrane, A., and Bensmaili, A., Chem. Eng. J., 2006, vol. 125, pp. 111–117. https://doi.org/10.1016/j.cej.2006.08.014

    Article  CAS  Google Scholar 

  44. Weber, T.W. and Chakraborti, R.K., Am. Inst. Chem. Eng. J., 1974, vol. 20, pp. 228–238. https://doi.org/10.1166/asem.2015.1664

    Article  CAS  Google Scholar 

  45. Langmuir, I., J.Am. Chem. Soc., 1918, vol. 40, pp. 1361–1368. https://doi.org/10.1021/ja02242a004

    Article  Google Scholar 

  46. Tunali, S. and Akar, T., J. Hazard. Mater., 2006, vol. 131, pp. 137–145. https://doi.org/10.1016/j.jhazmat.2005.09.02

    Article  CAS  PubMed  Google Scholar 

  47. Humelnicu, D., Drochioiu, G., Sturza, M.I., Cecal, A., and Popa, K., J.Radioanal. Nucl. Chem., 2006, vol. 270, pp. 637–640. https://doi.org/10.1007/s10967-006-0473-2

    Article  CAS  Google Scholar 

  48. Freundlich, H.M.F., J.Phys. Chem., 1906, vol. 57, pp. 385–470.

    CAS  Google Scholar 

  49. Lagergren, S., KungligaSvenska Vetenskapsakademiens, Handlinger, 1898, vol. 24, pp. 1–39.

    Google Scholar 

  50. Zhang, X., Jiao, C., Wang, J., Liu, Q., Li, R., and Yang, P., Chem. Eng. J., 2012, vol. 198, pp. 412–419. https://doi.org/10.1016/j.cej.2012.05.090

    Article  CAS  Google Scholar 

  51. Wu, F.C., Tseng, R.L., and Juang, R.S., J. Hazard.Mater., 2001, vol. 81, pp. 167–177. https://doi.org/10.1016/S0304-3894(00)00340-X

    Article  CAS  PubMed  Google Scholar 

  52. Ding, L., Deng, H.P., Wu, C., and Han, X., Chem. Eng. J., 2012, vol. 181, pp. 360–370. https://doi.org/10.1016/j.cej.2011.11.096

    Article  CAS  Google Scholar 

  53. Metaxas, M., Kasselouri-Rigopoulou, V., Galiatsatou, P., Konstantopoulou, C., and Oikonomou, D., J. Hazard. Mater., 2003, vol. 97, pp. 71–82. PMID: 12573830.

    Article  CAS  Google Scholar 

  54. Kaygun, A.K. and Akyil, S., J. Hazard. Mater., 2007, vol. 147, pp. 357–362. https://doi.org/10.1016/j.jhazmat.2007.01.020

    Article  CAS  PubMed  Google Scholar 

  55. Sharma, P., Sharma, M., and Tomar, R., J. Taiwan Inst. Chem. Eng., 2013, vol. 44, pp. 480–488. https://doi.org/10.1016/j.jtice.2012.12.009

    Article  CAS  Google Scholar 

  56. Talip, Z., Eral, M., and Hicsonmez, U., J. Environ. Radioact., 2009, vol. 100, pp. 139–143. https://doi.org/10.1016/j.jenvrad.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  57. Annam, S., Brahmmananda, C.V.S., Sivaraman, N., Sivaramakrishna, A., and Vijayakrishna, K., React. Funct. Polym., 2018, vol. 131, pp. 203–210. https://doi.org/10.1016/j.reactfunctpolym.2018.07.026

    Article  CAS  Google Scholar 

  58. Ansari, S.A., Mohapatra, P.K., and Manchanda, V.K., J. Hazard. Mater., 2009, vol. 161, pp. 1323–1329. https://doi.org/10.1016/j.jhazmat.2008.04.093

    Article  CAS  PubMed  Google Scholar 

  59. Maheswari, M.A. and Subramanian, M.S., Talanta, 2005, vol. 65, pp. 735–742. https://doi.org/10.1016/j.talanta.2004.07.044

    Article  CAS  Google Scholar 

  60. Prabhakaran, D. and Subramanian, M.S., Talanta, 2005, vol. 65, pp. 179–184. https://doi.org/10.1016/j.talanta.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  61. Karimi, M., Milani, S.A., and Abolgashemi, H., J. Nucl. Mater., 2016, vol. 479, pp. 174–183. https://doi.org/10.1016/j.jnucmat.2016.07.020

    Article  CAS  Google Scholar 

  62. Morsy, A.M.A., Environ. Technol. Innov., 2017, vol. 8, pp. 399–410. https://doi.org/10.1016/j.eti.2017.09.004

    Article  Google Scholar 

  63. Ashraf, A., Hany, A.A., Shawky, S., and Kandil, A.T., Tech. J. Eng. Appl. Sci., 2014, vol. 4, no. 1, pp. 1–10.

    Google Scholar 

  64. Mona, A. and Fawwaz, K., J. Earth Environ. Sci., 2009, vol. 2, pp. 108–119.

    Google Scholar 

  65. Savva, I., Efstathiou, M., Krasia-Christoforou, T., and Pashalidis, I., J. Radioanal. Nucl. Chem., 2013, vol. 298, pp. 1991–1997. https://doi.org/10.1007/s10967-013-2657-x

    Article  CAS  Google Scholar 

  66. Demirel, N., Merdivan, M., Pirinccioglu, N., and Hamamci, C., Anal. Chim. Acta, 2003, vol. 485, pp. 213–219. https://doi.org/10.1016/S0003-2670(03)00415-X

    Article  CAS  Google Scholar 

  67. Guerra, D.L., Viana, R.R., and Airoldi, C., J. Hazard. Mater., 2009, vol. 168, pp. 1504–1511. https://doi.org/10.1016/j.jhazmat.2009.03.034

    Article  CAS  PubMed  Google Scholar 

  68. Yousefi, S., Ahmadi, R.S.J., Shemirani, F., Jamali, M.R., and Niasari, M.S., Talanta, 2009, vol. 80, pp. 212–217. https://doi.org/10.1016/j.talanta.2009.06.058

    Article  CAS  PubMed  Google Scholar 

  69. Anirudhan, T.S., Rijith, S., and Tharun, A.R., Colloids Surf. A: Physicochem. Eng. Asp., 2010, vol. 368, pp. 13–22. https://doi.org/10.1016/j.colsurfa.2010.07.005

    Article  CAS  Google Scholar 

  70. Bandegharaei, A.H., Rastegar, A., Shoar, R.H., Allahabadi, A., Khamirchi, P., Sani, Z., and Mehrpouyan, M.A.R., J. Radioanal. Nucl. Chem., 2016, vol. 309, pp. 761–776. https://doi.org/10.1007/s10967-015-4689-x

    Article  CAS  Google Scholar 

  71. Abd El-Magied, M.O., Tolba, A.A., El-Gendy, H.S., Zaki, S.A., and Atia, A.A., Hydrometallurgy, 2017, vol. 169, pp. 89–98. https://doi.org/10.1016/j.hydromet.2016.12.011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ahmad.

Ethics declarations

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousef, L.A., Bakry, A.R., Ahmad, A.A. et al. Separation of Thorium Ions Using Synthesized Zeolite–Phosphate Composite from Sulfate Solution. Radiochemistry 62, 368–380 (2020). https://doi.org/10.1134/S1066362220030091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220030091

Keywords:

Navigation