Skip to main content
Log in

Quantization of Some Generalized Jaynes-Cummings Models in a Kerr-Like Medium

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Based on fundamental principles of quantum mechanics, we present a method for a rigorous analytic construction of the spectra of the one- and two-photon Jaynes-Cummings models in a Kerr medium. To obtain an idea of the method, we consider a first generalized Jaynes-Cummings model with a real, linear superpotential using techniques of supersymmetric quantum mechanics. The Hamiltonian of this model is written as a combination of operators generating the underlying superalgebra whose elements are defined as differential matrix operators. Based on the formalism of supersymmetric quantum mechanics and the properties of sets of common observables, we derive solutions of the one- and two-photon models expressed in terms of confluent hypergeometric functions. Finally, using numerical analysis, we study the influence of the Kerr effect on the energy spectra of the physical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE, 51, 89–109 (1963)

    Article  Google Scholar 

  2. P. Meystre, E. Geneux, A. Quattropani, and A. Faist, “Long-time behaviour of a two-level system in interaction with an electromagnetic field,” Nuovo Cimento B, 25, 521–537 (1975).

    Article  ADS  Google Scholar 

  3. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev., 93, 99–110 (1954).

    Article  ADS  Google Scholar 

  4. J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E. Solano, “Deep strong coupling regime of the Jaynes-Cummings model,” Phys. Rev. Lett., 105, 263603 (2010); arXiv:1008.1240v3 [quant-ph] (2010).

    Article  ADS  Google Scholar 

  5. A. Crespi, S. Longhi, and R. Osellame, “Photonic realization of the quantum Rabi model,” Phys. Rev. Lett., 108, 163601 (2012); arXiv:1111.6424v1 [quant-ph] (2011).

    Article  ADS  Google Scholar 

  6. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature, 450, 857–861 (2007).

    Article  ADS  Google Scholar 

  7. P. Forn-Dáz, J. Lisenfeld, D. Marcos, J. J. Garcia-Ripoll, E. Solano, C. J. P. M. Harmans, and J. E. Mooij, “Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime,” Phys. Rev. Lett., 105, 237001 (2010); arXiv:1005.1559v2 [cond-mat.supr-con] (2010).

    Article  ADS  Google Scholar 

  8. T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nature Phys., 6, 772–776 (2010).

    Article  ADS  Google Scholar 

  9. Ts. Gantsog, A. Joshi, and R. Tanas, “Phase properties of one- and two-photon Jaynes-Cummings models with a Kerr medium,” Quantum Semiclass. Opt., 8, 445–456 (1996).

    Article  ADS  Google Scholar 

  10. J. V. Hounguevou, F. A. Dossa, and G. Y. Avossevou, “Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes-Cummings models,” Theor. Math. Phys., 193, 1464–1479 (2017).

    Article  MathSciNet  Google Scholar 

  11. I. Travĕnec, “Solvability of the two-photon Rabi Hamiltonian,” Phys. Rev. A, 85, 043805 (2012); arXiv:1201.3717v1 [math-ph] (2012).

    Article  ADS  Google Scholar 

  12. B. Gardas and J. Dajka, “Generalized parity in multi-photon Rabi model,” Phys. Lett. A, 377, 3205–3208 (2013); arXiv:1301.3747v1 [quant-ph] (2013).

    Article  ADS  MathSciNet  Google Scholar 

  13. B. F. Samsonov and J. Negro, “Darboux transformations of the Jaynes-Cummings Hamiltonian,” J. Phys. A: Math. Gen., 37, 10115–10127 (2004); arXiv:quant-ph/0401092v1 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Dutt, A. Khare, and U. Sukhatme, “Supersymmetry, shape invariance, and exactly solvable potentials,” Amer. J. Phys., 56, 163–168 (1988).

    Article  ADS  Google Scholar 

  15. F. Cooper, A. Khare, and U. Sukhateme, “Supersymmetry and quantum mechanics,” Phys. Rep., 251, 267–385 (1995); arXiv:hep-th/9405029v2 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  16. I. Aref’eva, D. J. Fernández, V. Hussin, J. Negro, L. M. Nieto, and B. F. Samsonov, “Progress in supersymmetric quantum mechanics,” J. Phys. A: Math. Gen., 37, 10007–10458 (2004).

    Article  Google Scholar 

  17. A. A. Andrianov and M. V. Ioffe, “Nonlinear supersymmetric quantum mechanics: Concepts and realizations,” J. Phys. A: Math. Gen., 45, 503001 (2012); arXiv:1207.6799v2 [hep-th] (2012).

    Article  MathSciNet  Google Scholar 

  18. H.-X. Lu and X.-Q. Wang, “Multiphoton Jaynes-Cummings model solved via supersymmetric unitary transformation,” Chinese Phys., 9, 1009–1963 (2000).

    Google Scholar 

  19. B. M. Rodríguez-Lara, and H. M. Moya-Cessa, “The exact solution of generalized Dicke models via Susskind-Glogower operators,” J. Phys. A: Math. Theor., 46, 095301 (2013); arXiv:1207.6551v2 [quant-ph] (2012).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. D. Alhaidari, “The supersymmetric Jaynes-Cummings model and its solutions,” J. Phys. A: Math. Gen., 39, 15391–15401 (2006).

    Article  MathSciNet  Google Scholar 

  21. C. Buzano, M. G. Rasetti, and M. L. Rastello, “Dynamical superalgebra of the “dressed” Jaynes-Cummings model,” Phys. Rev. Lett., 62, 137–139 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Chaichian, D. Ellinas, and P. Kulish, “Quantum algebra as the dynamical symmetry of the deformed Jaynes-Cummings model,” Phys. Rev. Lett., 65, 980–983 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Maggitti, M. Radonjić, and B. M. Jelenković, “Dark-polariton bound pairs in the modified Jaynes-Cummings-Hubbard model,” Phys. Rev. A, 93, 013835 (2016).

    Article  ADS  Google Scholar 

  24. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Natl. Bur. Stds. Appl. Math. Ser., Vol. 55), Dover, New York (1972).

    MATH  Google Scholar 

  25. E. Choreño, D. Ojeda-Guillén, and V. D. Granados, “Matrix diagonalization and exact solution of k-photon Jaynes-Cummings model,” Eur. Phys. J. D, 72, 142 (2018); arXiv:1803.03206v1 [quant-ph] (2018).

    Article  ADS  Google Scholar 

  26. C. B. C. Gomes, F. A. G. Almeida, and A. M. C. Souza, “Influence of the Kerr effect in a Mott insulator on the superfluid transition from the point of view of the Jaynes-Cummings-Hubbard model,” Phys. Lett. A, 380, 1799–1803 (2016).

    Article  ADS  Google Scholar 

  27. M. Hohenadler, M. Aichhorn, L. Pollet, and S. Schmidt, “Polariton Mott insulator with trapped ions or circuit QED,” Phys. Rev. A, 85, 013810 (2012); arXiv:1108.5035v2 [cond-mat.str-el] (2011).

    Article  ADS  Google Scholar 

  28. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in acavity,” Rev. Modern Phys., 73, 565–582 (2001).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank a referee for the relevant comments that helped improve the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. J. Adanmitonde, G. Y. H. Avossevou or F. A. Dossa.

Additional information

Conflicts of interest

The authors declare no conflicts of interest.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 203, No. 3, pp. 451–466, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adanmitonde, A.J., Avossevou, G.Y.H. & Dossa, F.A. Quantization of Some Generalized Jaynes-Cummings Models in a Kerr-Like Medium. Theor Math Phys 203, 824–836 (2020). https://doi.org/10.1134/S0040577920060082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920060082

Keywords

Navigation