Skip to main content
Log in

Bäcklund Transformations for the Degasperis-Procesi Equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Bäcklund transformation for the Degasperis-Procesi (DP) equation. Using the reciprocal transformation and the associated DP equation, we construct the Bäcklund transformation for the DP equation involving both dependent and independent variables. We also obtain the corresponding nonlinear superposition, which we use together with the Bäcklund transformation to derive some soliton solutions of the DP equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Degasperis and M. Procesi, “Asymptotic integrability,” in: Symmetry and Perturbation Theory (Rome, Italy, 16–22 December 1998, A. Degasperis and G. Gaeta, eds.), World Scientific, Singapore (1999), pp. 23–37.

    Google Scholar 

  2. A. Degasperis, D. D. Holm, and A. Hone, “A new integrable equation with peakon solutions,” Theor. Math. Phys., 133, 1463–1474 (2002).

    Article  MathSciNet  Google Scholar 

  3. R. Camassa and D. D. Holm, “An integrable shallow water equation with peaked solitons,” Phys. Rev. Lett., 71, 1661–1664 (1993); arXiv:patt-sol/9305002v1 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Constantin, R. I. Ivanov, and J. Lenells, “Inverse scattering transform for the Degasperis-Procesi equation,” Nonlinearity, 23, 2559–2575 (2010); arXiv:1205.4754v1 [nlin.SI] (2012).

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Lundmark and J. Szmigielski, “Multi-peakon solutions of the Degasperis-Procesi equation,” Inverse Problems, 19, 1241–1245 (2003); arXiv:nlin/0503033v1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  6. H. Lundmark and J. Szmigielski, “Degasperis-Procesi peakons and the discrete cubic string,” Internat. Math. Res. Rap., 2005, 53–116 (2005).

    MathSciNet  MATH  Google Scholar 

  7. Y. Matsuno, “The N-soliton solution of the Degasperis-Procesi equation,” Inverse Probl., 21, 2085–2101 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  8. Y. Matsuno, “Multisolitons of the Degasperis-Procesi equation and their peakon limit,” Inverse Probl., 21, 1553–1570 (2005); arXiv:nlin/0511029v1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  9. Y. Matsuno, “Cusp and loop soliton solutions of short-wave models for the Camassa-Holm and Degasperis-Procesi equations,” Phys. Lett. A, 359, 451–457 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Constantin and R. Ivanov, “Dressing method for the Degasperis-Procesi equation,” Stud. Appl. Math., 138, 205–226 (2017).

    Article  MathSciNet  Google Scholar 

  11. C. Rogers and W. F. Shadwick, Bäcklund Transformations and Their Applications (Math. in Sci. Engin., Vol. 161), Acad. Press, New York (1982).

    MATH  Google Scholar 

  12. C. Rogers and W. K. Schief, Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory (Cambridge Texts Appl. Math., Vol. 30), Cambridge Univ. Press, Cambridge (2002).

    Book  Google Scholar 

  13. C. Gu, H. Hu, and Z. Zhou, Darboux Transformation in Soliton Theory and Its Geometric Applications, Shanghai Sci. Tech. Press, Shanghai (2005).

    Google Scholar 

  14. J. Hietarinta, N. Joshi, and F. W. Nijhoff, Discrete Systems and Integrability (Cambridge Texts Appl. Math., Vol. 54), Cambridge Univ. Press, Cambridge (2016).

    Book  Google Scholar 

  15. Y. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach (Progr. Math., Vol. 219), Birkhäuser, Basel (2003).

    Book  Google Scholar 

  16. D. Levi and R. Benguria, “Bäcklund transformations and nonlinear differential difference equations,” Proc. Nat. Acad. Sci. USA, 77, 5025–5027 (1980).

    Article  ADS  Google Scholar 

  17. D. Levi, “Nonlinear differential difference equations as Bäcklund transformations,” J. Phys. A: Math. Gen., 14, 1083–1098 (1981).

    Article  ADS  Google Scholar 

  18. A. G. Rasin and J. Schiff, “The Gardner method for symmetries,” J. Phys. A: Math. Theor., 46, 155202 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. G. Rasin and J. Schiff, “Bäcklund transformations for the Camassa-Holm equation,” J. Nonlinear Sci., 27, 45–69 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  20. G. Wang, Q. P. Liu, and H. Mao, “The modified Camassa-Holm equation: Bäcklund transformations and nonlinear superposition formulae,” J. Phys. A: Math. Theor. (accepted).

  21. A. G. Rasin and J. Schiff, “Unfamiliar aspects of Bäcklund transformations and an associated Degasperis-Procesi equation,” Theor. Math. Phys., 196, 1333–1346 (2018).

    Article  Google Scholar 

  22. M. C. Nucci, “Painlevé property and pseudopotentials for nonlinear evolution equations,” J. Phys. A: Math. Gen., 22, 2897–2913 (1989).

    Article  ADS  Google Scholar 

  23. M. Musette and R. Conte, “Bäcklund transformation of partial differential equations from the Painlevé-Gambier classication: I. Kaup-Kupershmidt equation,” J. Math. Phys., 39, 5617–5630 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Musette and C. Verhoeven, “Nonlinear superposition formula for the Kaup-Kupershmidt partial differential equation,” Phys. D, 144, 211–220 (2000).

    Article  MathSciNet  Google Scholar 

  25. C. Rogers and P. Wong, “On reciprocal Bäcklund transformations of inverse scattering schemes,” Phys. Scr., 30, 10–14 (1984).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Q. P. Liu for the discussions and suggestions. The illuminating remarks of a referee were useful for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Mao.

Additional information

Conflicts of interest

The authors declare no conflicts of interest.

This research is supported by the National Natural Science Foundation of China (Grant Nos. 11905110, 11871471, and 11931017), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2018GXNSFBA050020), and the Promotion Program for Young and Middle-Aged Teacher in Science and Technology Research of Guangxi Zhuang Autonomous Region, China (Grant No. 2019KY0417).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 203, No. 3, pp. 365–379, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, H., Wang, G. Bäcklund Transformations for the Degasperis-Procesi Equation. Theor Math Phys 203, 747–760 (2020). https://doi.org/10.1134/S0040577920060045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920060045

Keywords

Navigation