Skip to main content
Log in

On dispersion of solute in steady flow through a channel with absorption boundary: an application to sewage dispersion

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The paper describes the longitudinal dispersion of passive tracer materials released into an incompressible viscous fluid, flowing through a channel with walls having first-order reaction. Its model is based on a steady advection–diffusion equation with Dirichlet’s and mixed boundary conditions, and whose solution represents the concentration of the tracers in different downstream stations. For imposing the boundary conditions properly, artanh transformation is used to convert the infinite solution space to a finite one. A finite difference implicit scheme is used to solve the advection–diffusion equation in the computational region, and an inverse transformation is employed for the solution in the physical region. It is shown how the mixing of the tracer molecule influenced by the shear flow and due to the action of the absorption parameter at both the walls of the channel. For convection-dominated flow, uniform mesh is failed to capture the layer phenomena along the different downstream stations and a piecewise uniform mesh; namely, Shishkin mesh is used. The results are compared with existing experimental and numerical data available in the literature, and we have achieved an excellent agreement with them. The study plays a significant role to understand the basic mechanisms of sewage dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Taylor, G.I.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A219, 186–203 (1953). https://doi.org/10.1098/rspa.1953.0139

    Article  Google Scholar 

  2. Aris, R.: On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A235, 67–77 (1956). https://doi.org/10.1098/rspa.1956.0065

    Article  Google Scholar 

  3. Barton, N.G.: On the method of moments for solute dispersion. J. Fluid Mech. 126(1), 205 (1983). https://doi.org/10.1017/S0022112083000117

    Article  MATH  Google Scholar 

  4. Mukherjee, A., Mazumder, B.S.: Dispersion of contaminant in oscillatory flows. Acta Mech. 74(1–4), 107–122 (1988). https://doi.org/10.1007/BF01194345

    Article  MathSciNet  MATH  Google Scholar 

  5. Gill, W.N., Ruckenstien, E., Hsieh, H.P.: Homogeneous models for porous catalysts and tubular reactors with heterogeneous reactions. Chem. Eng Sci. 30, 685–694 (1975). https://doi.org/10.1016/0009-2509(75)85093-7

    Article  Google Scholar 

  6. Gill, W.N., Sankarasubramanian, R.: Exact analysis of unsteady convective diffusion. Proc. R. Soc. Lond. A 316, 341–350 (1970). https://doi.org/10.1098/rspa.1970.0083

    Article  MATH  Google Scholar 

  7. Mazumder, B.S., Bandyopadhyay, S.: On solute dispersion from an elevated line source in an open-channel flow. J. Eng. Math. 40, 197–209 (2001). https://doi.org/10.1023/A:1017598215497

    Article  MATH  Google Scholar 

  8. Mondal, K.K., Mazumder, B.S.: On solute dispersion in pulsatile flow through a channel with absorbing walls. Int. J. Non Linear Mech. 40(1), 69–81 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.05.017

    Article  MATH  Google Scholar 

  9. Yasuda, H.: Longitudinal dispersion of matter due to the shear effect of steady and oscillatory currents. J. Fluid Mech. 148, 383–403 (1984). https://doi.org/10.1017/S0022112084002391

    Article  MATH  Google Scholar 

  10. Mazumder, B.S., Dalal, D.C.: Contaminant dispersion from an elevated time-dependent source. J. Comput. Appl. Math. 126(1–2), 185–205 (2000). https://doi.org/10.1016/S0377-0427(99)00353-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Pannone, M., Mirauda, D., De Vincenzo, A., Molino, B.: Longitudinal dispersion in straight open channels: anomalous breakthrough curves and first-order analytical solution for the depth-averaged concentration. Water 10(4), 478 (2018). https://doi.org/10.3390/w10040478

    Article  Google Scholar 

  12. Mazumder, B.S., Xia, R.: Dispersion of pollutants in an asymmetric flow through a channel. Int. J. Eng. Sci. 32(9), 1501–1510 (1994). https://doi.org/10.1016/0020-7225(94)90127-9

    Article  MATH  Google Scholar 

  13. Mondal, K.K., Mazumder, B.S.: On dispersion of settling particles from an elevated source in an open-channel flow. J. Comput. Appl. Math. 193, 22–37 (2006). https://doi.org/10.1016/j.cam.2005.04.068

    Article  MathSciNet  MATH  Google Scholar 

  14. Mondal, K.K., Mazumder, B.S.: Dispersion of fine settling particles from an elevated source in an oscillatory turbulent flow. Eur. J. Mech. B Fluids 27, 707–725 (2008). https://doi.org/10.1016/j.euromechflu.2007.11.005

    Article  MathSciNet  MATH  Google Scholar 

  15. Raupach, M.R., Legg, B.J.: Turbulent dispersion from an elevated line source: measurements of wind-concentration moments and budgets. J. Fluid Mech. 136, 111–137 (1983). https://doi.org/10.1017/S0022112083002086

    Article  Google Scholar 

  16. Gupta, P.S., Gupta, A.S.: Effect of homogeneous and heterogeneous reactions on the dispersion of a solute in the laminar flow between two plates. Proc. R. Soc. Lond. A 330, 59–63 (1972). https://doi.org/10.1098/rspa.1972.0130

    Article  MATH  Google Scholar 

  17. Smith, R.: Effect of boundary absorption upon longitudinal dispersion in shear flows. J. Fluid Mech. 134(–1), 161 (1983). https://doi.org/10.1017/S0022112083003286

    Article  MATH  Google Scholar 

  18. Jiang, W.Q., Chen, G.Q.: Solution of Gill’s generalized dispersion model: solute transport in Poiseuille flow with wall absorption. Int. J. Heat Mass Transf. 127, 34–43 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.003

    Article  Google Scholar 

  19. Mazumder, B.S., Das, S.K.: Effect of boundary reaction on solute dispersion in pulsatile flow through a tube. J. Fluid Mech. 239, 523–549 (1992). https://doi.org/10.1017/S002211209200452X

    Article  Google Scholar 

  20. Rana, J., Murthy, P.V.S.N.: Solute dispersion in pulsatile Casson fluid flow in a tube with wall absorption. J. Fluid Mech. 793, 877–914 (2016). https://doi.org/10.1017/jfm.2016.155

    Article  MathSciNet  MATH  Google Scholar 

  21. Nagarani, P., Sarojamma, G., Jayaraman, G.: Effect of boundary absorption in dispersion in casson fluid flow in a tube. Ann. Biomed. Eng. 32(5), 706–719 (2004). https://doi.org/10.1023/B:ABME.0000030236.75826.8a

    Article  MATH  Google Scholar 

  22. Sebastian, B.T., Nagarani, P.: Convection–diffusion in unsteady non-Newtonian fluid flow in an annulus with wall absorption. Korea Aust. Rheol. J. 30(4), 261–271 (2018). https://doi.org/10.1007/s13367-018-0025-7

    Article  Google Scholar 

  23. Guo, J., Wu, X., Jiang, W., Chen, G.: Contaminant transport from point source on water surface in open channel flow with bed absorption. J. Hydrol. 561, 295–303 (2018). https://doi.org/10.1016/j.jhydrol.2018.03.066

    Article  Google Scholar 

  24. Rubol, S., Battiato, I., de Barros, F.P.J.: Vertical dispersion in vegetated shear flows. Water Resour. Res. 52, 8066–8080 (2016). https://doi.org/10.1002/2016WR018907

    Article  Google Scholar 

  25. Sullivan, P.J., Yip, H.: Near-field contaminant dispersion from an elevated line-source. Z. Angew. Math. Phys.: ZAMP 38(3), 409–423 (1987). https://doi.org/10.1007/BF00944959

    Article  MATH  Google Scholar 

  26. Schlichting, H.: Boundary Layer Theory, pp. 100–103. Springer, Berlin (2006) ISBN: 9783540329855

  27. Hirsch, C.: Numerical Computation of Internal and External Flows, Volume 1: Fundamentals of Numerical Discretization, pp. 195–197. Butterworth-Hienemann (2007). ISBN: 978-0-471-92385-5

  28. Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  29. Latini, M., Bernoff, A.J.: Transient anomalous diffusion in Poiseuille flow. J. Fluid Mech. (2001). https://doi.org/10.1017/S0022112001004906

    Article  MATH  Google Scholar 

  30. Guangyin, Z., Youcai, Z.: Enhanced sewage sludge dewaterability by chemical conditioning. Pollut. Control Resour. Recovery (2017). https://doi.org/10.1016/B978-0-12-811639-5.00002-4

    Article  Google Scholar 

Download references

Acknowledgements

One of us (Subham Dhar) is thankful to the CSIR, India, for financial support for pursuing this work (Grant No. 09/1219(0002)/2019-EMR-I). Dr. Kajal Kumar Mondal honestly acknoledges UGC, India, for partial financial support for pursuing this research work under project Grant No. F.PSW - 192/15-16 (ERO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subham Dhar.

Additional information

Communicated by Harindra Joseph Fernando.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, K.K., Dhar, S. & Mazumder, B.S. On dispersion of solute in steady flow through a channel with absorption boundary: an application to sewage dispersion. Theor. Comput. Fluid Dyn. 34, 643–658 (2020). https://doi.org/10.1007/s00162-020-00539-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-020-00539-7

Keywords

Navigation