Skip to main content
Log in

On the performance of all-optical OFDM based PM-QPSK and PM-16QAM

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

A polarization multiplexed all-optical orthogonal frequency division multiplexing (AO-OFDM) system is investigated analytically and numerically, with 12.5 Gbaud symbol rate, that is compatible with the International Telecommunication Union flexible grid. We demonstrate that fast adaptive filtering is not require at the receiver and chromatic dispersion with polarization mode dispersion can be compensated without the cyclic prefix insertion, with the maximum spectral efficiency by using proper optical filter. System performance are numerically and analytically evaluated considering nonlinear effects and power consumption, evidencing a good agreement between the theoretical model and numerical results. We compare AO-OFDM performance with coherent OFDM scheme using the derived theoretical formula and numerical results. 21 subcarriers are investigated with quadrature phase shift keying modulation and 7 subcarriers in case of 16-quadrature amplitude modulation, with a total capacity of 976.5 Gb/s and 651 Gb/s, respectively, considering 7% forward error correction overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chandrasekhar, S., & Liu, X. (2009). Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection. Optics Express, 17(24), 21350–21361.

    Google Scholar 

  2. Sano, A., Yamada, E., Masuda, H., Yamazaki, E., Kobayashi, T., Yoshida, E., et al. (2009). No-guard-interval coherent optical OFDM for 100 Gb/s long haul WDM transmission. Journal of Lightwave Technology, 27(16), 3705–3713.

    Google Scholar 

  3. Yi, X., Fontaine, N. K., Scott, R. P., & Yoo, S. J. B. (2010). Tb/s coherent optical OFDM systems enabled by optical frequency combs. Journal of Lightwave Technology, 28(14), 2054–2061.

    Google Scholar 

  4. Shieh, W., & Athaudage, C. (2006). Coherent optical orthogonal frequency division multiplexing. Electronics Letters, 42(10), 587–589.

    Google Scholar 

  5. Ma, Y., Yang, Q., Tang, Y., Chen, S., & Shieh, W. (2009). 1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access. In Proceedings of optical fiber communication conference, San Diego, CA, paper PDP C1.

  6. Huang, Y. K., Ip, E., Wang, Z., Huang, M. F., Shao, Y., & Wang, T. (2011). Transmission of spectral efficient super-channels using all-optical OFDM and digital coherent receiver technologies. Journal of Lightwave Technology, 29(24), 3838–3844.

    Google Scholar 

  7. Shieh, W., Yang, Q., & Ma, Y. (2008). 107 Gb/s coherent optical OFDM transmission over 1000-km SSMF using orthogonal band multiplexing. Optics Express, 16(9), 6378–6386.

    Google Scholar 

  8. Chen, H., Chen, M., & Xie, S. (2009). All-optical sampling orthogonal frequency-division multiplexing scheme for high-speed transmission system. Journal of Lightwave Technology, 27(21), 4848–4854.

    Google Scholar 

  9. Kobayashi, T., Sano, A., Yamada, E., Miyamoto, Y., Takara, H., & Takada, A. (2008). Electro-optically multiplexed 110 Gb/s optical OFDM signal transmission over 80 km SMF without dispersion compensation. Electronics Letters, 44(3), 225–226.

    Google Scholar 

  10. Sano, A., Masuda, H., Yoshida, E., Kobayashi, T., Yamada, E., Miyamoto, Y., Inuzuka, F., Hibino, Y., Takatori, Y., Hagimoto, K., Yamada, T., Sakamaki, Y. (2007). 30 \(\times \) 100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes. In Proceedings of European conference on optical communication Berlin (ECOC), Germany, paper PDS1.7.

  11. Hillerkuss, D., Schmogrow, R., Schellinger, T., Hillerkuss, D., Schmogrow, R., Schellinger, T., et al. (2011). 26 Tbit/s\(^-1\) line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nature Photonics, 5(6), 364–371.

  12. Shimizu, S., Cincotti, G., & Wada, N. (2012). Analysis of frequency mismatch in all-optical OFDM systems. Proceedings of photonics in switching, paper, S15–O11.

  13. Xiang, M., Tang, H., & FU, S., Tang, M., Shum, P., & Liu, D., (2015). Performance comparison of offset-16QAM and 16QAM for Nyquist WDM superchannel with digital spectral shaping. Journal of Lightwave Technology, 17(33), 3623–3629.

  14. Igarashi, K., Tsuritani, T., Morita, I., & Suzuki, M. (2015). Ultra-long-haul high-capacity super-Nyquist-WDM transmission experiment using multi-core fibers. Journal of Lightwave Technology, 33(5), 1027–1036.

    Google Scholar 

  15. Bosco, G., Curri, V., Carena, A., Poggiolini, P., & Forghieri, F. (2011). On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers. Journal of Lightwave Technology, 29(1), 53–61.

    Google Scholar 

  16. Shimizu, S., Cincotti, G., & Wada, N. (2012). Demonstration and performance investigation of all-optical OFDM systems based on arrayed waveguide gratings. Optics Express, 20(26), 525–534.

    Google Scholar 

  17. Shimizu, S., Cincotti, G., & Wada, N. (2014). High frequency-granularity and format independent optical channel defragmentation for flexible optical networks. In Proceedings of European conference on optical communication, Cannes, France.

  18. Bosco, G., Carena, A., Curri, V., Poggiolini, P., & Forghieri, F. (2010). Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems. Photonics Technology Letters, 22(15), 1129–1131.

    Google Scholar 

  19. Nagashima, T., Cincotti, G., Murakawa, T., Shimizu, S., Hasegawa, M., & Hattori, K. (2017). Peak-to-average power ratio reduction of transmission signal of all-optical orthogonal time/frequency domain multiplexing using fractional Fourier transform. Optics Communications, 402, 123–127.

    Google Scholar 

  20. Geng, Z., Kong, D., Corcoran, B., Guan, P., Da Ros, F., Da Silva, E. P., et al. (2019). All-optical OFDM demultiplexing with optical partial Fourier transform and coherent sampling. Optics Letters, 44, 443–446.

    Google Scholar 

  21. Hmood, J. K., & Harun, S. W. (2018). PAPR reduction in all-optical OFDM based on time interleaving odd and even subcarriers. Optics Communications, 437, 237–245.

    Google Scholar 

  22. Cincotti, G., Wada, N., Yoshima, S., Kataoka, N., & Kitayama, K.-I. (2005). 200 Gchip/s, 16-label simultaneous multiple-optical encoder/decoder and its application to optical packet switching. In Proceedings of optical fiber communication conference, paper PDP37.

  23. Lowery, A. J., & Du, L. B. (2011). All-optical OFDM transmitter design using AWGRs and low-bandwidth modulators. Optics Express, 19(17), 15696–15704.

    Google Scholar 

  24. Wang, Z., Kravtsov, K. S., Huang, Y. K., & Prucnal, P. R. (2011). Optical FFT/IFFT circuit realization using arrayed waveguide gratings and the applications in all-optical OFDM system. Optics Express, 19(5), 4501–4512.

    Google Scholar 

  25. Du, L.B., Schroeder, J., Carpenter, J., Eggleton, B., & Lowery, A. J. (2013). Flexible all-optical OFDM using WSSs. In Proceedings of optical fiber communication conference, paper PDP5B.9.

  26. Du, L. B., Schroeder, J., Morshed, M. M., Eggleton, B., & Lowery, A. J. (2013). Optical inverse Fourier transform generated 11.2-Tbit/s no-guard-interval all-optical OFDM transmission. In Proceedings of optical fiber communication conference paper, OW3B.5.

  27. Hoxha, J., Morosi, J., Shimizu, S., Martelli, P., Boffi, P., Wada, N., et al. (2015). Spectrally-efficient all-optical OFDM by WSS and AWG. Optics Express, 23(9), 10986–10996.

    Google Scholar 

  28. Shimizu, S., Cincotti, G., & Wada, N. (2014). Chromatic dispersion monitoring and adaptive compensation using pilot symbols in an 8 \(\times \) 12.5 Gbit/s all-optical OFDM system. Optics Express, 22(7), 8734–8741.

  29. Schroder, J., Du, L. B., Carpenter, J., Eggleton, B. J., & Lowery, A. J. (2014). All-optical OFDM with cyclic prefix insertion using flexible wavelength selective switch optical processing. Journal of Lightwave Technology, 32(4), 752–759.

    Google Scholar 

  30. Lowery, A. J. (2012). Inserting a cyclic prefix using arrayed-waveguide grating routers in all-optical OFDM transmitters. Optics Express, 22(9), 9742–9754.

    Google Scholar 

  31. Du, L. B., Schroder, J. B., & Lowery, A. J. (2009). Blind subcarrier equalization without pre-filtering for optical OFDM systems. In Proceedings of optical fiber communication conference, Los Angeles, CA, paper OM2H.6.

  32. Cincotti, G. (2015). Enhanced functionalities of AWGs. Journal of Lightwave Technology, 33(5), 998–1006.

    Google Scholar 

  33. Kataoka, N., Wada, N., Wang, X., Cincotti, G., Sakamoto, A., Terada, Y., et al. (2009). Field trial of duplex, 10 Gbps \(\times \) 8-user DPSK-OCDMA system using a single 16 \(\times \) 16 multi-port encoder/decoder and 16-level phase-shifted SSFBG encoder/decoders. Journal of Lightwave Technology, 27(3), 299–305.

    Google Scholar 

  34. Morosi, J., Hoxha, J., Martelli, P., Parolari, P., Cincotti, G., Shimizu, S., et al. (2016). 25 Gbit/s per user coherent all-optical OFDM for Tbit/s-capable PONs. Journal of Optical Communications and Networking, 8, 190–195.

    Google Scholar 

  35. Zakynthinos, P., Cincotti, G., Nazarathy, M., Nazarathy, M., Kaiser, R., Bayvel, P., et al. (2014). Advanced hybrid integrated transceivers to realize flexible Terabit networking. Photonics Society Newsletter, 28(1), 12–19.

    Google Scholar 

  36. Ishihara, K., Kobayashi, T., Kudo, R., Takatori, Y., Sano, A., Yamada, E., et al. (2008). Frequency-domain equalization without guard interval for optical transmission systems. Electronics Letters, 44(25), 1480–1482.

    Google Scholar 

  37. Savory, S. J. (2010). Digital coherent optical receivers: Algorithms and subsystems. Selected Topics in Quantum Electronics, 16(5), 1164–1179.

    Google Scholar 

  38. Spinnler, B. (2009). Complexity of algorithms for digital coherent receivers. Proceedings of European conference on optical communication Wien, Austria, paper, 7(3), 6.

    Google Scholar 

  39. Shieh, W., & Djordjevic, I. (2010). OFDM for Optical Communications. Cambridge: Academic Press.

    Google Scholar 

  40. Foschini, G. J., & Vannucci, G. (1988). Characterizing filtered light waves corrupted by phase noise. IEEE Transactions on Information Theory, 34(6), 1437–144.

    Google Scholar 

  41. Sharif, M., & Kahn, J. M. (2014). Variable-bandwidth superchannels using synchronized colorless transceivers. Journal of Lightwave Technology, 32(10), 1921–1929.

    Google Scholar 

  42. Benedetto, S., & Biglieri, E. (1999). Principles of digital transmission: With wireless applications. New York: Springer.

    Google Scholar 

  43. Pollet, T., Van Bladel, M., & Moeneclaey, M. (1995). BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise. IEEE Transactions on Communications, 43(234), 191–193.

    Google Scholar 

  44. Shieh, W., & Ho, K. P. (2008). Equalization-enhanced phase noise for coherent detection systems using electronic digital signal processing. Optics Express, 16(20), 15718–15727.

    Google Scholar 

  45. Ip, E., & Kahn, J. (2007). Feedforward carrier recovery for coherent optical communications. Journal of Lightwave Technology, 25(9), 2675–2692.

    Google Scholar 

  46. Garcia, F. A. C., Mello, D. A. A., & Waldman, H. (2009). Feedforward carrier recovery for polarization demultiplexed signals with unequal signal to noise ratios. Optics Express, 17(10), 7958–7969.

    Google Scholar 

  47. Fatadin, I., & Savory, S. J. (2010). Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning. Photonics Technology Letters, 22(2), 631–633.

    Google Scholar 

  48. Savory, S. J. (2012). Digital signal processing for coherent systems. In Proceedings of optical fiber communication conference, Los Angeles, USA, paper OTh3C7.

  49. Carena, A., Curri, V., Bosco, G., Poggiolini, P., & Forghieri, F. (2012). Modeling of the impact of non-linear propagation effects in uncompensated optical coherent transmission links. Journal of Lightwave Technology, 30(10), 1524–1539.

    Google Scholar 

  50. Chen, X., & Shieh, W. (2010). Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems. Optics Express, 18(18), 19039–19054.

    Google Scholar 

  51. Bononi, A., Serena, P., Rossi, N., Grellier, E., & Vacondio, F. (2012). Modeling nonlinearity in coherent transmissions with dominant intrachannel-fourwave-mixing. Optics Express, 20(7), 7777–7791.

    Google Scholar 

  52. Beygi, L., Agrell, E., Johannisson, P., Karlsson, M., Wymeersch, H., & Andrekson, P. (2012). A discrete-time model for uncompensated single-channel fiber-optical links. IEEE Transactions on Communications, 60(11), 3440–3450.

    Google Scholar 

  53. Poggiolini, P., Bosco, G., Carena, A., Curri, V., Jiang, Y., & Forghieri, F. (2014). The GN-model of fiber non-linear propagation and its applications. Journal of Lightwave Technology, 4(32), 100–127.

    Google Scholar 

  54. Shieh, W., & Chen, X. (2011). Information spectral efficiency and launch power density limits due to fiber nonlinearity for coherent practical OFDM systems. Photonics Journal, 3(2), 158–173.

    Google Scholar 

  55. Kataoka, N., Wada, N., Cincotti, G., & Kitayama, K.-I. (2011). 2.56 Tbps (40-Gbps \(\times \) 8-wavelengths 4-OC \(\times \) 2-POL) asynchronous WDM-OCDMA-PON using a multi-port encoder/decoder. In Proceedings of European conference on optical communication, Wien, Switzerland, Austria Genève, paper Th.13.B.6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Hoxha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoxha, J., Shimizu, S. & Cincotti, G. On the performance of all-optical OFDM based PM-QPSK and PM-16QAM. Telecommun Syst 75, 355–367 (2020). https://doi.org/10.1007/s11235-020-00687-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00687-5

Keywords

Navigation