Skip to main content
Log in

Solidus Surface of the Mo–Fe–B System

  • PHYSICOCHEMICAL MATERIALS RESEARCH
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The arc-melted Mo–Fe–B alloys with boron content up to ~41 at.% were studied after annealing at subsolidus temperatures by X-ray diffraction, differential thermal analysis, SEM/EMPA, and Pirani– Altertum technique for measurement of incipient melting temperatures. The partial solidus surface projection was constructed for the first time in the Mo–MoB1.0–FeB~0.8–Fe region using our own experimental and literature data. The Mo2FeB2 ternary compound has a two-phase equilibrium at subsolidus temperatures with each of the binary and unary phases from the constituent binary systems. The Mo2FeB2 phase has a wide homogeneity range for metal content: 14–27 at.% Fe. A three-phase α-MoB + β-MoB + Mo2B region exists close to the Mo–B side of the Gibbs composition triangle. In addition, a three-phase region composed by the Mo2FeB2 ternary compound and two iron modifications is shown to exist: BCC (δ-Fe) and FCC (γ-Fe). Another ternary compound, MoxFe3–xB, with molybdenum content of 1.3–2.0 at.% is present at subsolidus temperatures in two structural modifications: orthorhombic (Fe3C-type structure) and tetragonal (Ti3P-type structure). The intermetallic μ-(Mo6Fe7) phase in the Mo–Fe–B ternary system takes part in the three-phase equilibria on the solidus surface: σ-(MoFe) + μ-(Mo6Fe7) + Mo2FeB2 at 1375 ± ± 10°C, μ-(Mo6Fe7) + Mo2FeB2 + R-(Mo2Fe3) at 1340 ± 10°C, and σ-(MoFe) + μ-(Mo6Fe7) + R-(Mo2Fe3) at 1385 ± 10°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. K. Takagi, “Development and application of high strength ternary boride base cermets,” J. Solid State Chem., 179, 2809–2818 (2006).

    Article  CAS  Google Scholar 

  2. W. Yongguo and L. Zhaoqian, “Development of ternary-boride-based hard cladding material,” Mater. Res. Bull., 37, 417–423 (2002).

    Article  Google Scholar 

  3. Zh. Shi, H. Yin, Xu Zh., T. Zhang, G. Yang, Q. Zheng, R. S. Rao, J. Yang, F. Gao, M. Wu, and X. Qu, “Microscopic theory of hardness and optimized hardness model of MX1B and M2X2B2 (M = W, Mo; X1 = Fe, Co, X2 = Fe, Co, Ni) transition-metal ternary borides by the first-principles calculations and experimental verification,” Intermetallics, 114, 106573 (2019).

  4. S. Akiyama, S. Nakagawa, and M. Naoe, “Electrically conductive layer of wear-resistant Fe–Mo–B alloys for protecting magnetic recording tape,” IEEE Trans. Magn., 27, No. 6, 5094–5096 (1991).

    Article  CAS  Google Scholar 

  5. X. Ouyang, G. Chen, F. Yin, Y. Liu, and M. Zhao, “Effect of molybdenum on the microstructures of ascast Fe–B alloys and their corrosion resistance in molten zinc,” Corrosion. 73, No. 8, 942–952 (2017).

    Article  CAS  Google Scholar 

  6. Yu.V. Efimov, G.G. Mukhin, Z.G. Fridman, I.S. Bouravleva, and E.A. Myasnikova, “The change of the amorphous state of Fe–Mo–B alloys on heating,” J. Non-Cryst. Solids, 103, 45–48 (1988).

    Article  CAS  Google Scholar 

  7. W. Lingling, Z. Bangwie, Y. Ge, O. Yifang, and H. Wangyu, “Structure and crystallization of amorphous Fe–Mo–B alloys obtained by electroless plating,” J. Alloys Compd., 255, No. 1–2, 231–235 (1997).

    Article  Google Scholar 

  8. H. Jorgen and V. Nielsen, “Magnetic properties of Fe–Cr–B and Fe–Mo–B metallic glasses,” J. Magn. Magn. Mater., 19, No. 1–3, 138–140 (1980).

    Google Scholar 

  9. R.A. Dunlap and G. Stroink, “Magnetic properties of amorphous Fe–Mo–B alloys,” Canad. J. Phys., 62, 714–719 (1984).

    Article  CAS  Google Scholar 

  10. E. Dudrova, A. Salak, M. Selecka, and R. Bures, “Properties and microstructure of Fe–1.5 Mo powder steel sintered with a boron-based liquid phase,” Met. Mater., 33, No. 2, 60–65 (1985) [Translated from: Kovove Mater., 33, No. 2, 82–93 (1995)].

  11. J. Liu, R.M. German, A. Cardamone, T. Potter, and F.J. Semel, “Boron-enhanced sintering of ironmolybdenum steels,” Int. J. Powder Metall., 37, No. 5, 39–46 (2001).

    CAS  Google Scholar 

  12. T.V. Massalski, P.R. Subramanian, H. Okomoto, and L. Kasprzak (eds.), Binary Alloy Phase Diagrams, 2nd ed., in 3 vols., ASM International, Materials Park, Ohio (1990), p. 3589.

  13. P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., 4 vols., ASM International, Materials Park, Ohio (1991), p. 3580.

  14. V.B. Rajkumar and K.C. Hari Kumar, “Thermodynamic modelling of the Fe–Mo system coupled with experiments and ab initio calculations,” J. Alloys Compd., 611, 303–312 (2014).

    Article  CAS  Google Scholar 

  15. V.T. Witusiewicz, A.A. Bondar, U. Hecht, O.A. Potazhevska, and T.Ya. Velikanova, “Thermodynamic modelling of the ternary B–Mo–Ti system with refined B–Mo description,” J. Alloys Compd., 655, 336–352 (2016).

    Article  CAS  Google Scholar 

  16. Y. Khan, E. Kneller, and M. Sostarich, “The phase Fe3B,” Z. Metallkd., 73, No. 10, 624–626 (1982).

    CAS  Google Scholar 

  17. M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York (1958).

    Book  Google Scholar 

  18. P. Rogl and J.C. Schuster, “Mo–B–N (molybdenum–boron–nitrogen),” in: Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems, Monograph Series on Alloy Phase Diagrams, ASM International, Materials Park, Ohio (1992), pp. 64–67.

  19. H. Haschke, H. Nowoyny, and F. Benesovsky, “Investigation in ternary systems: {Mo, W}–{Fe, Co, Ni}– B,” Monatsh. Chem., 97, No. 5, 1459–1468 (1966).

    Article  CAS  Google Scholar 

  20. A. Leithe-Jasper, H. Klesnar, P. Rogl, M. Komai, and K.I. Takagi, “Reinvestigation of isothermal section in M(M = Mo,W)–Fe–B ternary systems at 1323 K,” J. Jpn. Inst. Met., 64, No. 2, 154–162 (2000).

    Article  CAS  Google Scholar 

  21. W. Rieger, H. Nowotny, and F. Benesovsky, “The crystal structure of Mo2FeB2,” Monatsh. Chem., 95, 1502–1503 (1964).

    Article  CAS  Google Scholar 

  22. E.I. Gladyshevskii, T.F. Fedorov, Yu.B. Kuzma, and R.V. Skolozdra, “Isothermal section of the molybdenum–iron–boron system,” Powder Metall. Met. Ceram., 5, No. 4, 305–309 (1966).

    Google Scholar 

  23. A.F. Guillermet, “The Fe–Mo (iron–molybdenum) system,” Bull. Alloy Phase Diagrams, 3, No. 3, 359–367 (1982).

    Article  Google Scholar 

  24. N.P. Lyakishev (ed.), Phase Diagrams of Binary Metallic Systems [in Russian], Mashinostroenie, Moscow (1997), Vol. 2, p. 1024.

  25. N.P. Lyakishev (ed.), Binary Phase Diagrams [in Russian], Mashinostroenie, Moscow (1996), Vol. 1, p. 245.

  26. Y. Khan, E. Kneller, and M. Sostarich, “Stability and crystallization of amorphous iron-boron obtained by quenching from the melt,” Z. Metallkd., 72, No. 8, 553–557 (1981).

    CAS  Google Scholar 

  27. V.T. Witusiewicz, A.A. Bondar, U. Hecht, A. Theofilatos, N.I. Tsyganenko, S.V. Utkin, and I.B. Tikhonova, “Experimental study and thermodynamic re-modelling of the constituent binaries and ternary B–Fe–Ti system,” J. Alloys Compd., 800, 419–449 (2019).

    Article  CAS  Google Scholar 

  28. S.V. Utkin, V.Z. Kublii, S.V. Sleptsov, A.A. Bondar, P.P. Levchenko, G.A. Osokin, and T.Ya. Velikanova, “Solidus surface of the Mo–Ni–B,” Nadtverd. Mater., 41, No. 5, 3–19 (2019).

    Google Scholar 

  29. K. Korniyenko and A. Bondar, “Boron–iron–molybdenum,” in: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology (New Series), W. Martinsen (ed.), Group IV: Physical Chemistry, G. Effenberg and S. Ilyenko (eds.), Ternary Alloy Systems, Phase Diagrams, Crystallographic and Thermodynamic Data Critically Evaluated by MSIT, Springer-Verlag, Berlin, Heidelberg (2007), Vol. 11D1, pp. 354–367.

  30. X. Yang, F. Yin, J. Hu, M. Zhao, and Y. Liu, “Experimental investigation and thermodynamic calculation of the B–Fe–Mo ternary system,” Calphad, 59, 189–198 (2017).

    Article  Google Scholar 

  31. T.Ya. Velikanova, A.A. Bondar, and A.V. Grytsiv, “The chromium–nickel–carbon phase diagram,” J. Phase Equilib., 20, No. 2, 125–147 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.A. Bondar.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 59, Nos. 1–2 (531), pp. 121–139, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utkin, S., Bondar, A., Kublii, V. et al. Solidus Surface of the Mo–Fe–B System. Powder Metall Met Ceram 59, 89–105 (2020). https://doi.org/10.1007/s11106-020-00141-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-020-00141-w

Keywords

Navigation