Skip to main content
Log in

Thermal plasma technology for radioactive waste treatment: a review

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this paper, a review of radioactive wastes treatment using thermal plasma technology is presented as a treatment method for radioactive waste management. Virtually all waste streams can be treated by the thermal plasma technologies, resulting in a conditioned product, free from organics and liquids, definitely meeting the acceptance criteria for safe storage and disposal. The application of the thermal plasma system in the nuclear area is still one of the current research topics due to the theoretical and practical complexity of the treatment. This paper discusses the performance of the thermal plasma systems, addressing the advantages and limitations of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jeong J, Baik MH, Kang MJ et al (2016) Radiological safety assessment of transporting radioactive wastes to the Gyeongju disposal facility in Korea. Nucl Eng Technol 48:1368–1375. https://doi.org/10.1016/j.net.2016.05.003

    Article  CAS  Google Scholar 

  2. IAEA (2003) Radioactive waste management glossary. Agency International Atomic Energy, Vienna

    Google Scholar 

  3. Ojovan MI (2011) Handbook of advanced radioactive waste conditioning technologies, 1st edn. Woodhead Publishing Limited, Cambridge, p 512

    Book  Google Scholar 

  4. International Atomic Energy Agency. Predisposal management of radioactive waste from nuclear power plants and research reactors: specific safety guide, vol 83

  5. Wareing A, Abrahamsen-Mills L, Fowler L et al (2017) Development of integrated waste management options for irradiated graphite. Nucl Eng Technol. https://doi.org/10.1016/j.net.2017.03.001

    Article  Google Scholar 

  6. Polkanov MA, Semenov KN, Arustamov AE et al (2011) Comparative analysis of technologies for treatment of solid radioactive waste of nuclear power plants—11470. In: WM2011 conference. Waste management conference, Phoenix

  7. International Atomic Energy Agency (IAEA) (2006) Application of thermal technologies for processing of radioactive waste. IAEA-TECDOC 1527 (IAEA), Vienna

  8. Gomez E, Rani DA, Cheeseman CR et al (2009) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater 161:614–626. https://doi.org/10.1016/j.jhazmat.2008.04.017

    Article  CAS  PubMed  Google Scholar 

  9. Morrin S, Lettieri P, Chapman C, Mazzei L (2012) Two stage fluid bed-plasma gasification process for solid waste valorisation: technical review and preliminary thermodynamic modelling of sulphur emissions. Waste Manag. https://doi.org/10.1016/j.wasman.2011.08.020

    Article  PubMed  Google Scholar 

  10. Fabry F, Rehmet C, Rohani V, Fulcheri L (2013) Waste gasification by thermal plasma: a review. Waste Biomass Valoriz 4:421–439. https://doi.org/10.1007/s12649-013-9201-7

    Article  CAS  Google Scholar 

  11. Sanlisoy A, Carpinlioglu MO (2017) A review on plasma gasification for solid waste disposal. Int J Hydrog Energy 42:1361–1365. https://doi.org/10.1016/j.ijhydene.2016.06.008

    Article  CAS  Google Scholar 

  12. Changming D, Chao S, Gong X et al (2018) Plasma methods for metals recovery from metal-containing waste. Waste Manag 77:373–387. https://doi.org/10.1016/j.wasman.2018.04.026

    Article  CAS  PubMed  Google Scholar 

  13. Capitelli M, Celiberto R, Colonna G et al (2015) Fundamental aspects of plasma chemical physics: kinetics. Springer series on atomic, optical, and plasma physics. Springer, Berlin

    Google Scholar 

  14. Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Tao X, Qi F, Yin Y, Dai X (2008) CO2 reforming of CH4 by combination of thermal plasma and catalyst. Int J Hydrog Energy 33:1262–1265. https://doi.org/10.1016/j.ijhydene.2007.12.057

    Article  CAS  Google Scholar 

  16. Huang H, Tang L (2007) Treatment of organic waste using thermal plasma pyrolysis technology. Energy Convers Manag 48:1331–1337. https://doi.org/10.1016/j.enconman.2006.08.013

    Article  CAS  Google Scholar 

  17. Schumacher U (2005) Basics of plasma physics. Plasma Phys 1–20. https://doi.org/10.1007/11360360_1

  18. Petitpas G, Rollier JD, Darmon A et al (2007) A comparative study of non-thermal plasma assisted reforming technologies. Int J Hydrog Energy 32:2848–2867. https://doi.org/10.1016/j.ijhydene.2007.03.026

    Article  CAS  Google Scholar 

  19. Živný O, Hlína M, Serov A et al (2020) Abatement of tetrafluormethane using thermal steam plasma. Plasma Chem Plasma Process 40:309–323. https://doi.org/10.1007/s11090-019-10047-0

    Article  CAS  Google Scholar 

  20. Zhukov MF, Zasypkin IM, Timoshevskii AN et al (2007) Thermal plasma torches: design, characteristics, application. Cambridge International Science Publishing, Cambridge

    Google Scholar 

  21. Tang L, Huang H, Hao H, Zhao K (2013) Development of plasma pyrolysis/gasification systems for energy efficient and environmentally sound waste disposal. J Electrostat 71:839–847. https://doi.org/10.1016/j.elstat.2013.06.007

    Article  Google Scholar 

  22. Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/41/5/053001

    Article  Google Scholar 

  23. Trelles JP, Chazelas C, Vardelle A, Heberlein JVR (2009) Arc plasma torch modeling. J Therm Spray Technol 18:728–752. https://doi.org/10.1007/s11666-009-9342-1

    Article  Google Scholar 

  24. Van Oost G, Hrabovsky M, Kopecky V et al (2006) Pyrolysis of waste using a hybrid argon-water stabilized torch. Vacuum 80:1132–1137. https://doi.org/10.1016/j.vacuum.2006.01.046

    Article  CAS  Google Scholar 

  25. Willis KP, Osada S, Willerton KL (2010) Plasma gasification: lessons learned at ecovalley WTE facility. In: 18th annual North American waste-to-energy conference NAWTEC18, pp 133–140. https://doi.org/10.1115/nawtec18-3515

  26. Brothier M, Gramondi P, Poletiko C, Michon UL, Hacala MA (2007) Biofuel and hydrogen production from biomass gasification by use of thermal plasma. High Temp Mater Process Int Q High Technol Plasma Process 11:231–244

    Article  CAS  Google Scholar 

  27. Prado ESP, Miranda FS, Petraconi G, Potiens AJ (2020) Use of plasma reactor to viabilise the volumetric reduction of radioactive wastes. Radiat Phys Chem 168:108625. https://doi.org/10.1016/j.radphyschem.2019.108625

    Article  CAS  Google Scholar 

  28. Maringer FJ, Šuráň J, Kovář P et al (2013) Radioactive waste management: review on clearance levels and acceptance criteria legislation, requirements and standards. Appl Radiat Isot 81:255–260. https://doi.org/10.1016/j.apradiso.2013.03.046

    Article  CAS  PubMed  Google Scholar 

  29. Ojovan MI, Lee WE, Kalmykov SN (2019) An introduction to nuclear waste immobilisation, 3rd edn. Elsevier, Amsterdam, p 497

    Google Scholar 

  30. Lee WE, Ojovan MI (2013) Fundamentals of radioactive waste (RAW): science, sources, classification and management strategies. Chapter 1. In: Ojovan MI (ed) Radioactive waste management and contaminated site clean-up, 1st edn. Woodhead Publishing Limited, Cambridge, pp 3e–50e

    Chapter  Google Scholar 

  31. Byun Y, Cho M, Hwang S-M, Chung J (2012) Thermal plasma gasification of municipal solid waste (MSW). Gasif Pract Appl. https://doi.org/10.5772/48537

    Article  Google Scholar 

  32. Zhao P, Ni G, Jiang Y et al (2010) Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace. J Hazard Mater 181:580–585. https://doi.org/10.1016/j.jhazmat.2010.05.052

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Liu K, Yan S et al (2016) Application of thermal plasma technology for the treatment of solid wastes in China: an overview. Waste Manag 58:260–269. https://doi.org/10.1016/j.wasman.2016.06.011

    Article  CAS  PubMed  Google Scholar 

  34. VanBrabant R, Deckers J, Lycx P, Detilleux M, Beguin P (2001) 40 Years experience of incineration of radioactive waste in Belgium. IAEA-CSP–6/C

  35. Deckers J (2011) Incineration and plasma processes and technology for treatment and conditioning of radioactive waste. Chapter 3. In: Ojovan MI (ed) Handbook of advanced radioactive waste conditioning technologies, 1st edn. Woodhead Publishing Limited, Cambridge, pp 43–66

    Chapter  Google Scholar 

  36. Ghiloufi I (2009) Simulation of radioelement volatility during the vitrification of radioactive wastes by arc plasma. J Hazard Mater 163:136–142. https://doi.org/10.1016/j.jhazmat.2008.06.110

    Article  CAS  PubMed  Google Scholar 

  37. Pfender E (1999) Thermal plasma technology: where do we stand and where are we going? Plasma Chem Plasma Process 19:1–31. https://doi.org/10.1023/A:1021899731587

    Article  CAS  Google Scholar 

  38. Danthurebandara M, Van Passel S, Vanderreydt I, Van Acker K (2015) Environmental and economic performance of plasma gasification in enhanced landfill mining. Waste Manag 45:458–467. https://doi.org/10.1016/j.wasman.2015.06.022

    Article  CAS  PubMed  Google Scholar 

  39. Arena U (2012) Process and technological aspects of municipal solid waste gasification. A review. Waste Manag 32:625–639. https://doi.org/10.1016/j.wasman.2011.09.025

    Article  CAS  PubMed  Google Scholar 

  40. Lombardi L, Carnevale E, Corti A (2015) A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag 37:26–44. https://doi.org/10.1016/j.wasman.2014.11.010

    Article  PubMed  Google Scholar 

  41. Tendler M, Rutberg P, Van Oost G (2005) Plasma based waste treatment and energy production. Plasma Phys Control Fusion. https://doi.org/10.1088/0741-3335/47/5A/016

    Article  Google Scholar 

  42. Filius KD, Whitworth CG (1996) Emissions characterization and off-gas system development for processing simulated mixed waste in a plasma centrifugal furnace. Hazard Waste Hazard Mater 13:143–152. https://doi.org/10.1089/hwm.1996.13.143

    Article  CAS  Google Scholar 

  43. Prado ES, Dellamano J, Carneiro ALG et al (2017) Technical feasibility study on volumetric reduction. In: 2017 international nuclear Atlanta conference—INA 2017

  44. Munir MT, Mardon I, Al-Zuhair S et al (2019) Plasma gasification of municipal solid waste for waste-to-value processing. Renew Sustain Energy Rev 116:109461. https://doi.org/10.1016/j.rser.2019.109461

    Article  CAS  Google Scholar 

  45. Materazzi M, Lettieri P, Taylor R, Chapman C (2016) Performance analysis of RDF gasification in a two stage fluidized bed-plasma process. Waste Manag 47:256–266. https://doi.org/10.1016/j.wasman.2015.06.016

    Article  CAS  PubMed  Google Scholar 

  46. Fourcault A, Marias F, Michon U (2010) Modelling of thermal removal of tars in a high temperature stage fed by a plasma torch. Biomass Bioenerg 34:1363–1374. https://doi.org/10.1016/j.biombioe.2010.04.018

    Article  CAS  Google Scholar 

  47. Agon N, Hrabovský M, Chumak O et al (2016) Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents. Waste Manag 47:246–255. https://doi.org/10.1016/j.wasman.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  48. Inaba T, Iwao T (2000) Treatment of waste by dc arc discharge plasmas. IEEE Trans Dielectr Electr Insul 7:684–692. https://doi.org/10.1109/94.879362

    Article  CAS  Google Scholar 

  49. Moustakas K, Fatta D, Malamis S et al (2005) Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2005.03.038

    Article  PubMed  Google Scholar 

  50. Tzeng CC, Kuo YY, Huang TF et al (1998) Treatment of radioactive wastes by plasma incineration and vitrification for final disposal. J Hazard Mater 58:207–220. https://doi.org/10.1016/S0304-3894(97)00132-5

    Article  CAS  Google Scholar 

  51. Deckers J (2010) Treatment of low-level radioactive waste by plasma: a proven technology? Proceedings of the ASME 2010 13th International conference on environmental remediation and radioactive waste management, vol 1. Tsukuba, Japan, October 3–7, 2010, pp 247–251. ASME. https://doi.org/10.1115/ICEM2010-40299

  52. Mosse AL, Savchin VV, Shilov VV (2008) Testing and calculating a two-chamber plasma furnace for processing of radioactive wastes. J Eng Phys Thermophys 81:598–606. https://doi.org/10.1007/s10891-008-0072-x

    Article  CAS  Google Scholar 

  53. Suneel G, Rajasekaran S, Selvakumar J et al (2019) Determination of reaction kinetics during vitrification of radioactive liquid waste for different types of base glass. Nucl Eng Technol 51:746–754. https://doi.org/10.1016/j.net.2018.12.002

    Article  CAS  Google Scholar 

  54. Dmitriev FA, Lifanov AEu, Savkin VN, Popkov MA, Polkanov VA, Gorbunov NA, Spirin YuA, Oskolkov MYu. Burov SY (2001) Plasma plant for radioactive waste treatment. In: WM’01 conference, Tucson, pp 1–10

  55. Heep W (2017) ICEM2010—the ZWILAG plasma facility “five years of successful operation”, pp 1–7

  56. Deckers J (2011) Radioactive waste treatment using plasma technology. In: Air and waste management association—international conference on thermal treatment technologies and hazardous waste combustors, pp 186–194

  57. Deckers J (2014) WM2014 conference, March 2–6, 2014, Phoenix, Arizona, USA, pp 1–9

  58. Treatment T, Historical OF, Solid R et al (2017) ICEM07- 7333, pp 1–5

  59. Ducharme C, Themelis N (2010) Analysis of thermal plasma-assisted waste-to-energy processes. In: Proceedings of the 18th annual North American waste-to-energy conference NAWTEC18, Florida, pp 1–6

  60. Yazıcıoğlu Ö, Katırcıoğlu TY (2017) Applications of plasma technology in energy sector. Kirklareli University Journal of Engineering and Science, pp 18–44

  61. Vorona NA, Gavrikov AV, Samokhin AA et al (2015) On the possibility of reprocessing spent nuclear fuel and radioactive waste by plasma methods. Phys Atomic Nucl 78:1624–1630. https://doi.org/10.1134/S1063778815140148

    Article  CAS  Google Scholar 

  62. Min BY, Kang Y, Song PS et al (2007) Study on the vitrification of mixed radioactive waste by plasma arc melting. J Ind Eng Chem 13:57–64

    CAS  Google Scholar 

  63. Yasui S, Amakawa T (2003) Vaporization rate of cesium from molten slag in a plasma melting furnace for the treatment of simulated low-level radioactive wastes. Nucl Technol 141:167–176. https://doi.org/10.13182/NT03-A3358

    Article  CAS  Google Scholar 

  64. Nakashima M, Fukui T, Nakashio N et al (2002) Characterization of solidified products yielded by plasma melting treatment of simulated non-metallic radioactive wastes. J Nucl Sci Technol 39:687–694. https://doi.org/10.1080/18811248.2002.9715250

    Article  CAS  Google Scholar 

  65. Ghiloufi I, Amouroux J (2010) Electrolysis effects on the cesium volatility during thermal plasma vitrification of radioactive wastes. High Temp Mater Process 14:77–88. https://doi.org/10.1615/HighTempMatProc.v14.i1-2.60

    Article  CAS  Google Scholar 

  66. Yasui S, Adachi K, Amakawa T (1997) Vaporization behavior of Cs in plasma melting of simulated low level miscellaneous solid wastes. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 36:5741–5746. https://doi.org/10.1143/jjap.36.5741

    Article  CAS  Google Scholar 

  67. Glasser F (2011) Application of inorganic cements to the conditioning and immobilisation of radioactive wastes. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Plasma and Process Laboratory of the Aeronautics Institute of Technology (LPP-ITA), National Institute for Space Research (INPE) and the Radioactive Waste Management Facility of the Nuclear and Energy Research Institute (SEGRR/IPEN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo S. P. Prado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prado, E.S.P., Miranda, F.S., de Araujo, L.G. et al. Thermal plasma technology for radioactive waste treatment: a review. J Radioanal Nucl Chem 325, 331–342 (2020). https://doi.org/10.1007/s10967-020-07269-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07269-4

Keywords

Navigation