Skip to main content
Log in

Designing a novel material with considerable nonlinear optical responses based on the bicorannulenyl molecule

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, a series of molecules decorated with Li atom and donor/acceptor have been theoretically designed based on bicorannulenyl molecule, where incorporating Li and different substitution are used as an effective strategy for enhancing nonlinear optical response. The mixed method is constructed through incorporating the Li and NO2/NH2 substitution. To ensure accuracy, results were compared with another two functionals. As expected, data from three different functional approximations indicate that these molecules have large first hyperpolarizability. The calculation proves that these molecules exhibit large first hyperpolarizability in the range of 1956–37,758 au. For Li doped systems, by analyzing NBO, charge transfer occurs in studied molecules, which helps to get large nonlinear optical response. It is revealed that when Li atom is introduced into the molecule with only NO2/NH2 substitution, the first hyperpolarizability increases significantly. Compared with Li doped and NO2 substitution, incorporating Li and NH2 substitution can be more powerful in increasing the first hyperpolarizabilities of bicorannulenyl molecule. In addition, the number of NH2 substitutions can more effectively enhance the first hyperpolarizability. We hope that this study could provide a new idea for designing nonlinear optical materials using bicorannulenyl molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barth WE, Lawton RG (1966). J Am Chem Soc 88:380–381

    CAS  Google Scholar 

  2. Biglari Z (2020). Physica E: Low-dimensional Systems and Nanostructures 115:113656

    CAS  Google Scholar 

  3. Butterfield AM, Gilomen B, Siegel JS (2012). Org Process Res Dev 16:664–676

    CAS  Google Scholar 

  4. Chen R, Lu RQ, Shi K, Wu F, Fang HX, Niu ZX, Yan XY, Luo M, Wang XC, Yang CY, Wang XY, Xu BB, Xia HP, Pei J, Cao XY (2015). Chem Commun 51:13768–13771

    CAS  Google Scholar 

  5. Chen R, Lu RQ, Shi PC, Cao XY (2016). Chin Chem Lett 27:1175–1183

    CAS  Google Scholar 

  6. Chen X, Bai FQ, Tang Y, Zang HX (2016). J Comput Chem 37:813–824

    CAS  PubMed  Google Scholar 

  7. Chen H, Wang WY, Wang L, Zhu CL, Fang XY, Qiu YQ (2016). J Mol Graph Model 64:139–146

    CAS  PubMed  Google Scholar 

  8. Datta A, Pati SK (2006). Chem Soc Rev 35:1305–1323

    CAS  PubMed  Google Scholar 

  9. Denis PA (2011). Chem Phys Lett 516:82–87

    CAS  Google Scholar 

  10. Dennington R, Keith TA, Millam JM (2016). GaussView version 6

  11. Du SL, Wang HY, Yang YY, Feng XZ, Shao XG, Chipot C, Cai WS (2019). J Phys Chem C 123:922–930

    CAS  Google Scholar 

  12. Eisenberg D, Filatov AS, Jackson EA, Rabinovitz M, Petrukhina MA, Scott LT, Shenhar R (2008). J Organomet Chem 73:6073–6078

    CAS  Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JrJE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, and Fox DJ, Gaussian, Inc., Wallingford CT, 2016. Gaussian 16, Revision A.03

  14. Gerald RE, Klingler RJ, Sandı́ G, Johnson CS, Scanlon LG, Rathke JW (2000). J Power Sources 89:237–243

    CAS  Google Scholar 

  15. Hanson JC, Nordman CE (1976). Acta Crystallogr B 32:1147–1153

    Google Scholar 

  16. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang WT (2010). J Am Chem Soc 132:6498–6506

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kanis DR, Ratner MA, Marks TJ (1994). Chem Rev 94:195–242

    CAS  Google Scholar 

  18. Kuvychko IV, Spisak SN, Chen YS, Popov AA, Petrukhina MA, Strauss SH, Boltalina OV (2012). Angew Chem Int Ed 51:4939–4492

    CAS  Google Scholar 

  19. Kuvychko IV, Spisak SN, Chen YS, Popov AA, Petrukhina MA, Strauss SH, Boltalina OV (2012). Angew Chem Int Ed 124:5023–5026

    Google Scholar 

  20. Lawton RG, Barth WE (1971). J Am Chem Soc 93:1730–1745

    CAS  Google Scholar 

  21. Li WQ, Zhou X, Chang Y, Feng JK, Tian WQ, Sun XD, Shao B (2013). Chem Phys Lett 588:131–135

    CAS  Google Scholar 

  22. Lu T, Chen FW (2012). J Comput Chem 33:580–592

    PubMed  Google Scholar 

  23. Lu RQ, Zheng YQ, Zhou YN, Yan XY, Lei T, Shi K, Zhou Y, Pei J, Zoppi L, Baldridge KK, Siegel JS, Cao XY (2014). J Mater Chem A 2:20515–20519

    CAS  Google Scholar 

  24. Lu RQ, Xuan W, Zheng YQ, Zhou YN, Yan XY, Dou JH, Chen R, Pei J, Weng WG, Cao XY (2014). RSC Adv 4:56749–56755

    CAS  Google Scholar 

  25. Lu RQ, Zhou YN, Yan XY, Shi K, Zheng YQ, Luo M, Wang XC, Pei J, Xia HP, Zoppi L, Baldridge KK, Siegel JS, Cao XY (2015). Chem Commun 51:1681–1684

    CAS  Google Scholar 

  26. Mack J, Vogel P, Jones D, Kaval N, Sutton A (2007). Org Biomol Chem 5:2448–2452

    CAS  PubMed  Google Scholar 

  27. Mehta G, Panda G (1997). Tetrahedron Lett 38:2145–2148

    CAS  Google Scholar 

  28. Miyajima D, Tashiro K, Araoka F, Takezoe H, Kim J, Kato K, Takata M, Aida T (2009). J Am Chem Soc 131:44–45

    CAS  PubMed  Google Scholar 

  29. Oudar JL (1977). J Chem Phys 67:446–457

    CAS  Google Scholar 

  30. Oudar JL, J Chem Phys Chemla DS (1977) 66:2664–2668

  31. Sanyal S, Manna AK, Pati SK (2013). J Phys Chem C 117:825–836

    CAS  Google Scholar 

  32. Schmidt BM, Lentz D (2014). Chem Lett 43:171–177

    CAS  Google Scholar 

  33. Scott LT, Cheng PC, Hashemi M, Bratcher MS, Meyer DT, Warren HB (1997). J Am Chem Soc 119:10963–10968

    CAS  Google Scholar 

  34. Scott LT, Jackson EA, Zhang Q, Steinberg BD, Bancu M, Li B (2012). J Am Chem Soc 134:107–110

    CAS  PubMed  Google Scholar 

  35. Shelton DP, Rice JE (1994). Chem Rev 94:3–29

    CAS  Google Scholar 

  36. Shi K, Lei T, Wang XY, Wang JY, Pei J (2014). Chem Sci 5:1041–1045

    CAS  Google Scholar 

  37. Sumner NJ, Spisak SN, Filatov AS, Rogachev AY, Zabula AV, Petrukhina MA (2014). Organometallics 33:2874–2878

    CAS  Google Scholar 

  38. Sun WM, Fan LT, Li Y, Liu JY, Wu D, Li ZR (2014). Inorg Chem 53:6170–6178

    CAS  PubMed  Google Scholar 

  39. Sygula A, Xu G, Marcinow Z, Rabideau PW (2001). Tetrahedron 57:3637–3644

    CAS  Google Scholar 

  40. Tahmasebi E, Shakerzadeh E, Biglari Z (2016). Appl Surf Sci 363:197–208

    CAS  Google Scholar 

  41. Valenti G, Bruno C, Rapino S, Fiorani A, Jackson EA, Scott LT, Paolucci F, Marcaccio M (2010). J Phys Chem C 114:19467–19472

    CAS  Google Scholar 

  42. Wang WY, Ma NN, Sun SL, Qiu YQ (2014). Organometallics 33:3341–3352

    CAS  Google Scholar 

  43. Wang JJ, Zhou ZJ, Bai Y, He HM, Wu D, Li Y, Li ZR, Zhang HX (2015). Dalton Trans 44:4207–4214

    CAS  PubMed  Google Scholar 

  44. Willets A, Rice JE, Burland DM, Shelton DP (1992). J Chem Phys 97:7590–7599

    Google Scholar 

  45. Xie Q, Perez-Cordero E, Echegoyen L (1992). J Am Chem Soc 114:3978–3980

    CAS  Google Scholar 

  46. Xu HL, Zhong RL, Sun SL, Su ZM (2011). J Phys Chem C 115:16340–16346

    CAS  Google Scholar 

  47. Zabula AV, Rogachev AY, Petrukhina MA (2011). Science 333:1008–1011

    CAS  PubMed  Google Scholar 

  48. Zhang Y, Scanlon LG, Rottmayer MA, Balbuena PB (2006). J Phys Chem B 110:22532–22541

    CAS  PubMed  Google Scholar 

  49. Zhou ZJ, Yu GT, Ma F, Huang XR, Wu ZJ, Li ZR (2014). J Mater Chem C 2:306–311

    CAS  Google Scholar 

  50. Zoppi L, Martin-Samos L, Baldridge KK (2011). J Am Chem Soc 133:14002–14009

    CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the start-up Foundation of Fujian University of Technology (GY-Z13109), Development Foundation of Fujian University of Technology (GY-Z160127), the Education Department of Fujian Province (GY-Z17105, JAT170393), Science and Technology Major Special Project of Fujian Province (2014HZ0005-1), Industrial Technology joint Innovation Project of Fujian Province (2015-779), and Fujian Province Science and Technology Innovation Leaders (GY-Z17142).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao-Dong Song or Qian-Ting Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YD., Wang, QT. & Ni, Q. Designing a novel material with considerable nonlinear optical responses based on the bicorannulenyl molecule. J Mol Model 26, 201 (2020). https://doi.org/10.1007/s00894-020-04450-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04450-0

Keywords

Navigation