Skip to main content
Log in

Improvement in Toughness of Poly(ethylene 2,5-furandicarboxylate) by Melt Blending with Bio-based Polyamide11 in the Presence of a Reactive Compatibilizer

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The objective of this study was to improve the toughness of bio-based brittle poly(ethylene 2,5-furandicarboxylate) (PEF) by melt blending with bio-based polyamide11 (PA11) in the presence of a reactive multifunctional epoxy compatibilizer (Joncryl ADR®-4368). The morphological, thermal, rheological, and mechanical properties of PEF/PA11 blends were investigated. Compared with neat PEF, the toughness of PEF/PA11 blend was not improved in the absence of the reactive compatibilizer due to the poor compatibility between the two polymers. When Joncryl was incorporated into PEF/PA11 blends, the interfacial tension between PEF and PA11 was obviously reduced, reflecting in the fine average particle size and narrow distribution of PA11 dispersed phase as observed by scanning electron microscopy (SEM). The complex viscosities of PEF/PA11 blends with Joncryl were much higher than that of PEF/PA11 blend, which could be ascribed to the formation of graft copolymers through the epoxy groups of Joncryl reacting with the end groups of PEF and PA11 molecular chains. Thus, the compatibility and interfacial adhesion between PEF and PA11 were greatly improved in the presence of Joncryl. The compatibilized PEF/PA11 blend with 1.5 phr Joncryl exhibited significantly improved elongation at break and unnotch impact strength with values of 90.1% and 30.3 kJ/m2, respectively, compared with those of 3.6% and 3.8 kJ/m2 for neat PEF, respectively. This work provides an effective approach to improve the toughness of PEF which may expand its widespread application in packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu, X. L.; Wang, X.; Zhang, Z.; Peng, S. X.; Chen, H.; Zhao, X. P. High-performance fully bio-based poly(lactic acid)/polyamide11 (PLA/PA11) blends by reactive blending with multifunctionalized epoxy. Polym. Test. 2019, 78, 105980.

    Google Scholar 

  2. Gandini, A. Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 2008, 41, 9491–9504.

    CAS  Google Scholar 

  3. Wang, J. G.; Liu, X. Q.; Zhu, J. From furan to high quality bio-based poly(ethylene furandicarboxylate) (PEF). Chinese J. Polym. Sci. 2018, 36, 720–727.

    CAS  Google Scholar 

  4. Walha, F.; Lamnawar, K.; Maazouz, A.; Jaziri, M. Rheological, morphological and mechanical studies of sustainably sourced polymer blends based on poly(lactic acid) and polyamide 11. Polymers 2016, 8, 61.

    PubMed Central  Google Scholar 

  5. Codou, A.; Guigo, N.; van Berkel, J. G.; de Jong, E.; Sbirrazzuoli, N. Non-isothermal crystallization kinetics of biobased poly(ethylene 2,5-furandicarboxylate) synthesized via the direct esterification process. Macromol. Chem. Phys. 2014, 215, 2065–2074.

    CAS  Google Scholar 

  6. Xie, H. Z.; Wu, L. B.; Li, B. G.; Dubois, P. Modification of poly(ethylene 2,5-furandicarboxylate) with biobased 1,5-pentanediol: Significantly toughened copolyesters retaining high tensile strength and O2 barrier property. Biomacromolecules 2019, 20, 353–364.

    CAS  PubMed  Google Scholar 

  7. Codou, A.; Guigo, N.; van Berkel, J. G.; de Jong, E.; Sbirrazzuoli, N. Preparation and crystallization behavior of poly(ethylene 2,5-furandicarboxylate)/cellulose composites by twin screw extrusion. Carbohyd. Polym. 2017, 174, 1026–1033.

    CAS  Google Scholar 

  8. Martino, L.; Niknam, V.; Guigo, N.; van Berkel, J. G.; Sbirrazzuoli, N. Morphology and thermal properties of novel clay-based poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites. RSC Adv. 2016, 6, 59800–59807.

    CAS  Google Scholar 

  9. Sun, L. Y.; Wang, J. G.; Mahmud, S.; Jiang, Y. H.; Zhu, J.; Liu, X. Q. New insight into the mechanism for the excellent gas properties of poly(ethylene 2,5-furandicarboxylate) (PEF): role of furan ring’s polarity. Eur. Polym. J. 2019, 118, 642–650.

    CAS  Google Scholar 

  10. Xie, H. Z.; Wu, L. B.; Li, B. G.; Dubois, P. Poly(ethylene 2,5-furandicarboxylate-mb-poly(tetramethylene glycol)) multiblock copolymers: from high tough thermoplastics to elastomers. Polymer 2018, 155, 89–98.

    CAS  Google Scholar 

  11. Wang, X. S.; Liu, S. Y.; Wang, Q. Y.; Li, J. G.; Wang, G. Y. Synthesis and characterization of poly(ethylene 2,5-furandicarboxylate-co-µ-caprolactone) copolyesters. Eur. Polym. J. 2018, 109, 191–197.

    CAS  Google Scholar 

  12. Wu, J. P.; Xie, H. Z.; Wu, L. B.; Li, B. G.; Duboi, P. DBU-catalyzed biobased poly(ethylene 2,5-furandicarboxylate) polyester with rapid melt crystallization: synthesis, crystallization kinetics and melting behavior. RSC Adv. 2016, 6, 101578–101586.

    CAS  Google Scholar 

  13. Wang, J. G.; Liu, X. Q.; Jia, Z.; Sun, L. Y.; Zhu, J. Highly crystalline polyesters synthesized from furandicarboxylic acid (FDCA): potential bio-based engineering plastic. Eur. Polym. J. 2018, 109, 379–390.

    CAS  Google Scholar 

  14. Wang, J. G.; Liu, X. Q.; Zhang, Y. J.; Liu, F.; Zhu, J. Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: influence of composition on mechanical and barrier properties. Polymer 2016, 103, 1–8.

    CAS  Google Scholar 

  15. Papageorgiou, G. Z.; Papageorgiou, D. G.; Terzopoulou, Z.; Bikiaris, D. N. Production of bio-based 2,5-furan dicarboxylate polyesters: recent progress and critical aspects in their synthesis and thermal properties. Eur. Polym. J. 2016, 83, 202–229.

    CAS  Google Scholar 

  16. Knoop, R. J. I.; Vogelzang, W.; van Haveren, J.; van Es, D. S. High molecular weight poly(ethylene-2,5-furanoate): critical aspects in synthesis and mechanical property determination. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4191–4199.

    CAS  Google Scholar 

  17. Jiang, M.; Liu, Q.; Zhang, Q.; Ye, C.; Zhou, G. Y. A series of furanaromatic polyesters synthesized via direct esterification method based on renewable resources. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 1026–1036.

    CAS  Google Scholar 

  18. Wang, X. S.; Wang, Q. Y.; Liu, S. Y.; Wang, G. Y. Biobased copolyesters: synthesis, structure, thermal and mechanical properties of poly(ethylene 2,5-furandicarboxylate-co-ethylene 1, 4-cyclohexanedicarboxylate). Polym. Degrad. Stab. 2018, 154, 96–102.

    CAS  Google Scholar 

  19. van Berkel, J. G.; Guigo, N.; Kolstad, J. J.; Sbirrazzuoli, N. Biaxial orientation of poly(ethylene 2,5-furandicarboxylate): an explorative study. Macromol. Mater. Eng. 2018, 303, 1700507.

    Google Scholar 

  20. Wang, G. Q.; Jiang, M.; Zhang, Q.; Wang, R.; Zhou, G. Y. Biobased copolyesters: synthesis, crystallization behavior, thermal and mechanical properties of poly(ethylene glycol sebacate-co-ethylene glycol 2,5-furan dicarboxylate). RSC Adv. 2017, 7, 13798–13807.

    CAS  Google Scholar 

  21. Wang, G. Q.; Jiang, M.; Zhang, Q.; Wang, R.; Zhou, G. Y. Biobased multiblock copolymers: synthesis, properties and shape memory performance of poly(ethylene 2,5-furandicarboxylate)-b-poly(ethylene glycol). Polym. Degrad. Stab. 2017, 155, 121–127.

    Google Scholar 

  22. Hong, S.; Min, K. D.; Nam, B. U.; Park, O. O. High molecular weight bio furan-based co-polyesters for food packaging applications: synthesis, characterization and solid-state polymerization. Green Chem. 2016, 18, 5142–5150.

    CAS  Google Scholar 

  23. Ma, J. P.; Pang, Y.; Wang, M.; Xu, J.; Ma, H.; Nie, X. The copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials. J. Mater. Chem. 2012, 22, 3457–3461.

    CAS  Google Scholar 

  24. Xie, H. Z.; Wu, L. B.; Li, B. G.; Dubois, P. Biobased poly(ethylene-co-hexamethylene 2,5-furandicarboxylate) (PEHF) copolyesters with superior tensile properties. Ind. Eng. Chem. Res. 2018, 57, 13094–13102.

    CAS  Google Scholar 

  25. Lee, H.; Chin, I. Toughening effect of annealing-induced intermolecular crystallization of PBA-g-PLLA in PLA matrix. Macromol. Res. 2016, 25, 515–521.

    Google Scholar 

  26. Poulopoulou, N.; Pipertzis, A.; Kasmi, N.; Bikiaris, D. N.; Papageorgiou, D. G.; Floudas, G.; Papageorgiou, G. Z. Green polymeric materials: on the dynamic homogeneity and miscibility of furan-based polyester blends. Polymer 2019, 154, 187–199.

    Google Scholar 

  27. Poulopoulou, N.; Kasmi, N.; Bikiaris, D. N.; Papageorgiou, D. G.; Floudas, G.; Papageorgiou, G. Z. Sustainable polymers from renewable resources: polymer blends of furan-based polyesters. Macromol. Mater. Eng. 2018, 303, 1800153.

    Google Scholar 

  28. Chen, Y.; Jiang, M.; Sun, C. J.; Zhang, Q.; Fu, Z. P.; Xu, L.; Zhou, G. Y. Preparation and characterization of poly(ethylene 2,5-furandicarboxylate)/poly(butylene succinate) blends. Chinese J. Appl. Chem. 2015, 32, 1022–1027.

    CAS  Google Scholar 

  29. Rasselet, D.; Caro-Bretelle, A. S.; Taguet, A.; Lopez-Cuesta, J. M. Reactive compatibilization of PLA/PA11 blends and their application in additive manufacturing. Materials 2019, 12, 485.

    CAS  PubMed Central  Google Scholar 

  30. Deng, L.; Xu, C.; Ding, S. S.; Fang, H. G.; Wang, X. H.; Wang, Z. G. Processing a supertoughened polylactide ternary blend with high heat deflection temperature by melt blending with a high screw rotation speed. Ind. Eng. Chem. Res. 2019, 58, 10618–10628.

    CAS  Google Scholar 

  31. Liu, T. X.; Chen, D.; Phang, I. Y.; Wei, C. Studies on crystal transition of polyamide 11 nanocomposites by variable-temperature X-ray diffraction. Chinese J. Polym. Sci. 2014, 32, 115–122.

    CAS  Google Scholar 

  32. Retolaza, A.; Eguiazabal, J. I.; Nazabal, J. Structure and mechanical properties of polyamide-6, 6/poly(ethylene terephthalate) blends. Polym. Eng. Sci. 2004, 55, 1405–1413.

    Google Scholar 

  33. Koning, C.; van Duin, M.; Pagnoulle, C.; Jerome, R. Strategies for compatibilization of polymer blends. Prog. Polym. Sci. 1998, 23, 707–757.

    CAS  Google Scholar 

  34. Najafi, N.; Heuzey, M. C.; Carreau, P. J. Crystallization behavior and morphology of polylactide and PLA/clay nanocomposites in the presence of chain extenders. Polym. Eng. Sci. 2013, 53, 1053–1064.

    CAS  Google Scholar 

  35. Hafsaoui, S. L.; Benziane, M.; Tcharkhtchi, A. Thermal transfer simulation regarding the rotational moulding of polyamide 11. J. Therm. Anal. Calorim. 2013, 112, 285–292.

    CAS  Google Scholar 

  36. Stoclet, G.; du Sart, G. G.; Yeniad, B.; de Vos, S.; Lefebvre, J. M. Isothermal crystallization and structural characterization of poly(ethylene-2,5-furanoate). Polymer 2015, 52, 165–176.

    Google Scholar 

  37. Stoclet, G.; Seguela, R.; Lefebvre, J. M. Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: polylactide/polyamide11. Polymer 2011, 52, 1417–1425.

    CAS  Google Scholar 

  38. Al-Itry, R.; Lamnawar, K.; Maazouz, A. Reactive extrusion of PLA, PBAT with a multi-functional epoxide: physico-chemical and rheological properties. Eur. Polym. J. 2014, 58, 90–102.

    CAS  Google Scholar 

  39. Wu, S. Predicting chain conformation and entanglement of polymers from chemical structure. Polym. Eng. Sci. 1992, 32, 823–830.

    CAS  Google Scholar 

  40. Yu, R. L.; Zhang, L. S.; Feng, Y. H.; Zhang, R. Y.; Zhu, J. Improvement in toughness of polylactide by melt blending with bio-based poly(ester)urethane. Chinese J. Polym. Sci. 2014, 32, 1099–1110.

    CAS  Google Scholar 

  41. Fang, H. G.; Jiang, F.; Wu, Q. H.; Ding, Y. S.; Wang, Z. G. Supertough polylactide materials prepared through in situ reactive blending with PEG-based diacrylate monomer. ACS Appl. Mater. Interfaces 2014, 6, 13552–13563.

    CAS  PubMed  Google Scholar 

  42. Wang, X. H.; Zhang, H. X.; Wang, Z. G.; Jiang, B. Z. Toughening of poly(butylene terephthalate) with epoxidized ethylene propylene diene rubber. Polymer 1998, 38, 1569–1572.

    Google Scholar 

  43. Wang, X. H.; Zhang, H. X.; Jiang, W.; Wang, Z. G.; Liu, C. H.; Liang, H. J.; Jiang, B. Z. Toughening of nylon with epoxidised ethylene propylene diene rubber. Polymer 1998, 39, 2697–2699.

    CAS  Google Scholar 

  44. Sangeetha, V. H.; Varghese, T. O.; Nayak, S. K. Toughening of polylactic acid using styrene ethylene butylene styrene: mechanical, thermal, and morphological studies. Polym. Eng. Sci. 2016, 56, 669–675.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51803224).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Gang Wang or Jin Zhu.

Electronic Supplementary Information

10118_2020_2449_MOESM1_ESM.pdf

Improvement in Toughness of Poly(ethylene 2,5-furandicarboxylate) by Melt Blending with Bio-based Polyamide11 in the Presence of a Reactive Compatibilizer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Tian, AP., Fang, YJ. et al. Improvement in Toughness of Poly(ethylene 2,5-furandicarboxylate) by Melt Blending with Bio-based Polyamide11 in the Presence of a Reactive Compatibilizer. Chin J Polym Sci 38, 1099–1106 (2020). https://doi.org/10.1007/s10118-020-2449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2449-z

Keywords

Navigation