Skip to main content
Log in

Investigation of experimental issues concerning successful operation of quantum-logic-based \(^{27}\hbox {Al}^+\) ion optical clock

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Successful operations of quantum-logic-based \(^{27}\hbox {Al}^+\) ion optical clocks have been reported by several groups. But there are still several lingering issues. The first is the proper choice of logic ions, and the second is the proper quantum state identification methods. In this paper, the advantage of using \(^{25}\hbox {Mg}^+\) as the logic ion to ensure smaller time-dilation shift is discussed. We also compare several statistical methods to identify the \(^{27}\hbox {Al}^+\) ion clock state. Finally, we report the observation of the \(^{27}\hbox {Al}^+\) ion \({^1S_0} \rightarrow ^{3}{P_0}\) clock transition based on \(^{25}\hbox {Mg}^+\)\(^{27}\hbox {Al}^+\) ion pair. As a precondition for quantum logic spectroscopy (QLS), both the stretch (STR) mode and the center of mass (COM) mode of the \(^{27}\hbox {Al}^+\) and \(^{25}\hbox {Mg}^+\) ion pair are cooled to the vibrational ground state by Raman sideband cooling. The mean phonon number is measured to be 0.10(1) for the STR mode and 0.01(1) for the COM mode, respectively. The heating rate is evaluated to be 0.23(5) phonons/s for the STR mode and 3.0(7) phonons/s for the COM mode, respectively. The clock transition is observed with a full-width-half-maximum (FWHM) of 38(4) Hz at 22 ms interrogation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006)

    ADS  Google Scholar 

  2. C.W. Chou, D.B. Hume, T. Rosenband, D.J. Wineland, Science 329, 1630 (2010)

    ADS  Google Scholar 

  3. R. Godun, P. Nisbet-Jones, J. Jones, S. King, L. Johnson, H. Margolis, K. Szymaniec, S. Lea, K. Bongs, P. Gill, Phys. Rev. Lett. 113, 210801 (2014)

    ADS  Google Scholar 

  4. N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, E. Peik, Phys. Rev. Lett. 113, 210802 (2014)

    ADS  Google Scholar 

  5. R. Bondarescu, A. Schärer, A. Lundgren, G. Hetényi, N. Houlié, P. Jetzer, M. Bondarescu, Geophys. J. Int. 202, 1770 (2015)

    ADS  Google Scholar 

  6. S. Kolkowitz, I. Pikovski, N. Langellier, M. Lukin, R. Walsworth, J. Ye, Phys. Rev. D 94, 124043 (2016)

    ADS  Google Scholar 

  7. P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R.L. Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C.L. Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. Baynes, H. Margolis, P. Gill, Phys. Rev. Lett. 118, 221102 (2017)

    ADS  Google Scholar 

  8. B.M. Roberts, G. Blewitt, C. Dailey, M. Murphy, M. Pospelov, A. Rollings, J. Sherman, W. Williams, A. Derevianko, Nat. Commun. 8, 1195 (2017)

    ADS  Google Scholar 

  9. S. Brewer, J.-S. Chen, A. Hankin, E. Clements, C. Chou, D. Wineland, D. Hume, D. Leibrandt, Phys. Rev. Lett. 123, 033201 (2019)

    ADS  Google Scholar 

  10. T.P. Heavner, E.A. Donley, F. Levi, G. Costanzo, T.E. Parker, J.H. Shirley, N. Ashby, S. Barlow, S.R. Jefferts, Metrologia 51, 174 (2014)

    ADS  Google Scholar 

  11. W. Zhuang, T.-G. Zhang, J.-B. Chen, Chin. Phys. Lett. 31, 093201 (2014)

    ADS  Google Scholar 

  12. W.H. Oskay, S.A. Diddams, E.A. Donley, T.M. Fortier, T.P. Heavner, L. Hollberg, W.M. Itano, S.R. Jefferts, M.J. Delaney, K. Kim, F. Levi, T.E. Parker, J.C. Bergquist, Phys. Rev. Lett. 97, 020801 (2006)

    ADS  Google Scholar 

  13. Q. Liu, H. Zou, X. He, G. Chen, Y. Shen, J. Yuan, Rev. Sci. Instrum. 90, 013107 (2019)

    ADS  Google Scholar 

  14. G.P. Barwood, G. Huang, H.A. Klein, L.A.M. Johnson, S.A. King, H.S. Margolis, K. Szymaniec, P. Gill, Phys. Rev. A 89, 050501(R) (2014)

    ADS  Google Scholar 

  15. P. Dubé, A.A. Madej, M. Tibbo, J.E. Bernard, Phys. Rev. Lett. 112, 173002 (2014)

    ADS  Google Scholar 

  16. P. Dubé, J.E. Bernard, M. Gertsvolf, Metrologia 54, 290 (2017)

    ADS  Google Scholar 

  17. S.A. King, R.M. Godun, S.A. Webster, H.S. Margolis, L.A.M. Johnson, K. Szymaniec, P.E.G. Baird, P. Gill, New J. Phys. 14, 013045 (2012)

    ADS  Google Scholar 

  18. N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, E. Peik, Phys. Rev. Lett. 108, 090801 (2012)

    ADS  Google Scholar 

  19. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, E. Peik, Phys. Rev. Lett. 116, 063001 (2016)

    ADS  Google Scholar 

  20. Y. Hashimoto, M. Kitaoka, T. Yoshida, S. Hasegawa, Appl. Phys. B 103, 339 (2011)

    ADS  Google Scholar 

  21. P.-L. Liu, Y. Huang, W. Bian, H. Shao, Y. Qian, H. Guan, K.-L. Gao, Chin. Phys. Lett. 31, 113702 (2014)

    ADS  Google Scholar 

  22. Y. Huang, H. Guan, M. Zeng, L. Tang, K. Gao, Phys. Rev. A 99, 011401(R) (2019)

    ADS  Google Scholar 

  23. Y. Wang, R. Dumke, T. Liu, A. Stejskal, Y. Zhao, J. Zhang, Z. Lu, L. Wang, T. Becker, H. Walther, Opt. Commun. 273, 526 (2007)

    ADS  Google Scholar 

  24. N. Ohtsubo, Y. Li, K. Matsubara, T. Ido, K. Hayasaka, Opt. Express 25, 11725 (2017)

    ADS  Google Scholar 

  25. T.W. Koerber, M.H. Schacht, K.R.G. Hendrickson, W. Nagourney, E.N. Fortson, Phys. Rev. Lett. 88, 143002 (2002)

    ADS  Google Scholar 

  26. M. Takamoto, T. Takano, H. Katori, Nat. Photon. 5, 288 (2011)

    ADS  Google Scholar 

  27. B.J. Bloom, T.L. Nicholson, J.R. Williams, S.L. Campbell, M. Bishof, X. Zhang, W. Zhang, S.L. Bromley, J. Ye, Nature 506, 71 (2014)

    ADS  Google Scholar 

  28. Y.-G. Lin, Q. Wang, Y. Li, F. Meng, B.-K. Lin, E.-J. Zang, Z. Sun, F. Fang, T.-C. Li, Z.-J. Fang, Chin. Phys. Lett. 32, 090601 (2015)

    ADS  Google Scholar 

  29. Y.-B. Wang, M.-J. Yin, J. Ren, Q.-F. Xu, B.-Q. Lu, J.-X. Han, Y. Guo, H. Chang, Chin. Phys. B 27, 023701 (2018)

    ADS  Google Scholar 

  30. S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, C.H.A. Al-Masoudi, S. Häfner, V. Stefan, S. Uwe, L. Christian, New J. Phys. 16, 073023 (2014)

    ADS  Google Scholar 

  31. T. Bothwell, D. Kedar, E. Oelker, J.M. Robinson, S.L. Bromley, W.L. Tew, J. Ye, C.J. Kennedy, Metrologia 56, 065004 (2019)

    ADS  Google Scholar 

  32. T. Takano, R. Mizushima, H. Katori, Appl. Phys. Express 10, 072801 (2017)

    ADS  Google Scholar 

  33. N. Hinkley, J.A. Sherman, N.B. Phillips, M. Schioppo, N.D. Lemke, K. Beloy, M. Pizzocaro, C.W. Oates, A.D. Ludlow, Science 341, 1215 (2013)

    ADS  Google Scholar 

  34. M.-J. Zhang, H. Liu, X. Zhang, K.-L. Jiang, Z.-X. Xiong, B.-L. Lü, L.-X. He, Chin. Phys. Lett. 33, 070601 (2016)

    Google Scholar 

  35. W.F. McGrew, X. Zhang, R.J. Fasano, S.A. Schäffer, K. Beloy, D. Nicolodi, R.C. Brown, N. Hinkley, G. Milani, M. Schioppo, T.H. Yoon, A.D. Ludlow, Nature 564, 87 (2018)

    ADS  Google Scholar 

  36. W.F. McGrew, X. Zhang, H. Leopardi, R.J. Fasano, D. Nicolodi, K. Beloy, J. Yao, J.A. Sherman, S.A. Schäffer, J. Savory, R.C. Brown, S. Römisch, C.W. Oates, T.E. Parker, T.M. Fortier, A.D. Ludlow, Optica 6, 448 (2019)

    ADS  Google Scholar 

  37. J.J. McFerran, L. Yi, S. Mejri, S.D. Manno, W. Zhang, J. Guéna, Y.L. Coq, S. Bize, Phys. Rev. Lett. 108, 183004 (2012)

    ADS  Google Scholar 

  38. H.-L. Liu, S.-Q. Yin, K.-K. Liu, J. Qian, Z. Xu, T. Hong, Y.-Z. Wang, Chin. Phys. B 22, 043701 (2013)

    ADS  Google Scholar 

  39. X. Fu, Y. Zhang, S. Fang, J. Sun, R. Zhao, J. Huang, Z. Xu, Y. Wang, Chinese Optics Letters 16, 060202 (2018)

    Google Scholar 

  40. N. Yu, H. Dehmelt, W. Nagourney, Proc. Natl. Acad. Sci. USA 89, 7289 (1992)

    ADS  Google Scholar 

  41. M.S. Safronova, M.G. Kozlov, C.W. Clark, Phys. Rev. Lett. 107, 143006 (2011)

    ADS  Google Scholar 

  42. J. Zhang, K. Deng, J. Luo, Z.-H. Lu, Chin. Phys. Lett. 34, 050601 (2017)

    ADS  Google Scholar 

  43. P.O. Schmidt, T. Rosenband, C. Lange, W. Itano, J. Bergquist, D.J. Wineland, Science 309, 749 (2005)

    ADS  Google Scholar 

  44. T. Rosenband, P. Schmidt, D. Hume, W. Itano, T. Fortier, J. Stalnaker, K. Kim, S. Diddams, J. Koelemeij, J. Bergquist, D. Wineland, Phys. Rev. Lett. 98, 220801 (2007)

    ADS  Google Scholar 

  45. M. Guggemos, M. Guevara-Bertsch, D. Heinrich, O.A. Herrera-Sancho, Y. Colombe, R. Blatt, C.F. Roos, New J. Phys. 21, 103003 (2019)

    ADS  Google Scholar 

  46. S.-J. Chao, K.-F. Cui, S.-M. Wang, J. Cao, H.-L. Shu, X.-R. Huang, Chin. Phys. Lett. 36, 120601 (2019)

    ADS  Google Scholar 

  47. K. Ksenia, Z. Ilia, S. Ilya, B. Alexander, K. Nikolay, in 2018 European Frequency and Time Forum (EFTF) (IEEE, 2018)

  48. S. Hannig, L. Pelzer, N. Scharnhorst, J. Kramer, M. Stepanova, Z.T. Xu, N. Spethmann, I.D. Leroux, T.E. Mehlstäubler, P.O. Schmidt, Rev. Sci. Instrum. 90, 053204 (2019)

    ADS  Google Scholar 

  49. J.B. Wübbena, S. Amairi, O. Mandel, P.O. Schmidt, Phys. Rev. A 85, 043412 (2012)

    ADS  Google Scholar 

  50. J.-S. Chen, S. Brewer, C. Chou, D. Wineland, D. Leibrandt, D. Hume, Phys. Rev. Lett. 118, 053002 (2017)

    ADS  Google Scholar 

  51. H.G. Dehmeit, IEEE Trans. Instrum. Meas. IM–31, 83 (1982)

    ADS  Google Scholar 

  52. K. Feng Cui, J. Juan Shang, S. Jia Chao, S. Mao Wang, J. Bo Yuan, H. Lin Shu, X. Ren Huang, J. Phys. B At. Mol. Opt. Phys. 51, 045502 (2018)

    Google Scholar 

  53. Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. A 61, 063418 (2000)

    ADS  Google Scholar 

  54. M. Brownnutt, M. Kumph, P. Rabl, R. Blatt, Rev. Mod. Phys. 87, 1419 (2015)

    ADS  Google Scholar 

  55. K. Deng, H. Che, Y. Lan, Y.P. Ge, Z.T. Xu, W.H. Yuan, J. Zhang, Z.H. Lu, J. Appl. Phys. 118, 113106 (2015)

    ADS  Google Scholar 

  56. H. Che, K. Deng, Z.T. Xu, W.H. Yuan, J. Zhang, Z.H. Lu, Phys. Rev. A 96, 013417 (2017)

    ADS  Google Scholar 

  57. Z.T. Xu, K. Deng, H. Che, W.H. Yuan, J. Zhang, Z.H. Lu, Phys. Rev. A 96, 052507 (2017)

    ADS  Google Scholar 

  58. H. Liu, W. Yuan, F. Cheng, Z. Wang, Z. Xu, K. Deng, Z. Lu, J. Phys. B At. Mol. Opt. Phys. 51, 225002 (2018)

    ADS  Google Scholar 

  59. J. Zhang, W.H. Yuan, K. Deng, A. Deng, Z.T. Xu, C.B. Qin, Z.H. Lu, J. Luo, Rev. Sci. Instrum. 84, 123109 (2013)

    ADS  Google Scholar 

  60. X.Y. Zeng, Y.X. Ye, X.H. Shi, Z.Y. Wang, K. Deng, J. Zhang, Z.H. Lu, Opt. Lett. 43, 1690 (2018)

    ADS  Google Scholar 

  61. D.B. Hume, T. Rosenband, D.J. Wineland, Phys. Rev. Lett. 99, 120502 (2007)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Key R&D Program of China (Grant No. 2017YFA0304400), the Key-Area Research and Development Program of GuangDong Province (Grant No. 2019B030330001), and the National Natural Science Foundation of China (Grants No. 11774108, No. 91336213 and No. 61875065), and

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z.Y., Liu, H.L., Wei, W.Z. et al. Investigation of experimental issues concerning successful operation of quantum-logic-based \(^{27}\hbox {Al}^+\) ion optical clock. Appl. Phys. B 126, 129 (2020). https://doi.org/10.1007/s00340-020-07479-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07479-4

Navigation