Skip to main content
Log in

Plasmon-based optical sensors for high-sensitivity surface deformation detection of silver and gold

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Surface deformation is a common phenomenon in many situations, and can be caused by stress, temperature variation, environmental variation, etc. With the developing of nanotechnology, biological and chemical properties of nano materials are generally in association with its surface condition. High-sensitivity methods of sensing super tiny surface deformations become necessary. In this work, a high sensitive surface deformation sensor is proposed by one-dimensional photonic crystal. Results show that Tamm plasmon polaritons are generated in this configuration and the reflection spectrum is dramatically influenced by the surface deformation of the silver and gold films. The variation rate of reflection light intensity reaches 20% when the surface deformation of is 1 nm. And the variation rate reaches 13% per nanometer for gold surfaces. Since the detecting precision of light intensity is greatly high, the theoretical precision of this device can reach picometer magnitude. Meanwhile, this configuration also can realize mapping surface deformation distribution through scanning method. The simulation results reveal the proposed configuration can distinguish 1 nm surface deformation of silver surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afinogenov BI, Bessonov VO, Soboleva IV, Fedyanin AA (2019) Ultrafast all-optical light control with Tamm plasmons in photonic nanostructures. ACS Photonics 6:844–850

    Article  CAS  Google Scholar 

  • Bashiri J, Rezaei B, Barvestani J, Zapata-Rodríguez CJ (2019) Bloch surface waves engineering in one-dimensional photonic crystals with a chiral cap layer. J Opt Soc Am B 36:2106–2113

    Article  CAS  Google Scholar 

  • Braun T, Baumann V, Iff O, Hofling S, Schneider C, Kamp M (2015) Enhanced single photon emission from positioned InP/GaInP quantum dot coupled to a confined Tamm-plasmon mode. Appl Phys Lett 106:041113

    Article  Google Scholar 

  • Cheng H, Kuo C, Hung Y, Chen K, Jeng S (2018) Liquid-crystal active Tamm-plasmon devices. Phys Rev Appl 9:064034

    Article  CAS  Google Scholar 

  • Das R, Srivastava T, Jha R (2015) On the performance of Tamm-plasmon and surface-plasmon hybrid-mode refractive-dindex sensor in metallo- dielectric heterostructure configuration. Sensor Actuat B-Chem. 206:443–448

    Article  CAS  Google Scholar 

  • Fei Y, Liu Y, Dong D, Gao K, Ren S, Fan Y (2018) Multiple adjustable optical Tamm states in one-dimensional photonic quasicrystals with predesigned bandgaps. Opt Express 26:34872–34879

    Article  CAS  Google Scholar 

  • Geng D, Cabello-Olmo E, Lozano G, Miguez H (2019) Tamm plasmons directionally enhance rare-earth nanophosphor emission. ACS Photonics 6:634–641

    Article  CAS  Google Scholar 

  • Gong Y, Liu X, Lu H, Wang L, Wang G (2011) Perfect absorber supported by optical Tamm states in plasmonic waveguide. Opt Express 19:18393–18398

    Article  CAS  Google Scholar 

  • Goyal AK, Pal S (2020) Design analysis of Bloch surface wave based sensor for haemoglobin concentration measurement. Nanosci, Appl. https://doi.org/10.1007/s13204-020-01437-4

    Book  Google Scholar 

  • Kaliteevski M, Iorsh I, Brand S, Abram R, Chamberlain J, Kavokin A, Shelykh I (2007) Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B 76:165415

    Article  Google Scholar 

  • Kim KJ, Lu P, Culp JT, Ohodnicki PR (2018) Metal-organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform. ACS Sensors 3:386–394

    Article  CAS  Google Scholar 

  • Li L, Zhao H, Zhang J (2017a) Electrically tuning reflection of graphene-based Tamm plasmon polariton structures at 1550 nm. Appl Phys Lett 111:083504

    Article  Google Scholar 

  • Li L, Zhao H, Zhang J (2017b) Tunable perfect absorber supported by accumulation electron gas at ITO-dielectric heterointerface. J Phys D Appl Phys 50:405109

    Article  Google Scholar 

  • Li L, Zhao H, Zhang J, Hao H, Xing F (2019) Tunable Tamm plasmon polaritons and perfect absorption in a metal-PC cavity. J Phys D Appl Phys 52:255105

    Article  CAS  Google Scholar 

  • Liu Y, Huang Y, Duan X (2019) Van der Waals integration before and beyond two-dimensional materials. Nature 567:323–333

    Article  CAS  Google Scholar 

  • Lu H, Gan X, Jia B, Mao D, Zhao J (2016) Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons. Opt Lett 41:4743–4746

    Article  CAS  Google Scholar 

  • Lundt N, Klembt S, Cherotchenko E et al (2016) Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat Commun 7:13328

    Article  CAS  Google Scholar 

  • Malkova N, Ning CZ (2006) Shockley and Tamm surface states in photonic crystals. Phys Rev B 73:113113

    Article  Google Scholar 

  • Mischok A, Siegmund B, Ghosh DS et al (2017) Controlling Tamm plasmons for organic narrowband near-infrared photodetectors. ACS Photonics 4:2228–2234

    Article  CAS  Google Scholar 

  • Musorin AI, Chetvertukhin AV, Dolgova TV et al (2019) Tunable multimodal magnetoplasmonic metasurfaces. Appl Phys Lett 115:151102

    Article  Google Scholar 

  • Nunez-Sanchez S, Lopez-Garcia M, Murshidy MM et al (2016) Excitonic optical Tamm states: a step toward a full molecular-dielectric photonic integration. ACS Photonics 3:743–748

    Article  CAS  Google Scholar 

  • Paulauskas A, Tumenas S, Selskis A, Tolenis T, Valavicius A, Balevicius Z (2018) Hybrid Tamm-surface plasmon polaritons mode for detection of mercury adsorption on 1D photonic crystal/gold nanostructures by total internal reflection ellipsometry. Opt Express 26:30400–30408

    Article  CAS  Google Scholar 

  • Sasin ME, Seisyan RP, Kalitteevski MA et al (2008) Tamm plasmon polaritons: slow and spatially compact light. Appl Phys Lett 92:251112

    Article  Google Scholar 

  • Style RW, Jagota A, Hui CY, Dufresne ER (2017) Elastocapillarity: surface tension and the mechanics of soft solids. Annu Rev Condens Matter Phys. 8:99–118

    Article  CAS  Google Scholar 

  • Symond C, Lheureux G, Hugonin JP et al (2013) Confined Tamm plasmon lasers. Nano Lett 13:3179–3184

    Article  Google Scholar 

  • Tsurimaki Y, Tong JK, Boriskin VN et al (2018) Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection. ACS Photonics 5:929–938

    Article  CAS  Google Scholar 

  • Vilela P, El-Sagheer A, Millar TM, Brown T, Muskens OL, Kanaras AG (2017) Graphene oxide-upconversion nanoparticle based optical sensors for targeted detection of mRNA biomarkers present in Alzheimer’ s disease and prostate cancer. ACS Sensors 2:52–56

    Article  CAS  Google Scholar 

  • Wang R, Xia H, Zhang D et al (2017) Bloch surface waves confined in one dimension with a single polymeric nanofibre. Nat Commun. 8:14330

    Article  CAS  Google Scholar 

  • Xia F, Wang H, Xiao D, Dubey M, Rumasubramaniam A (2014) Two-dimensional material nanophotonics. Nat Photonics 8:899–907

    Article  CAS  Google Scholar 

  • Yuan W, Wang Y, Li H, Wu H, Zhang Z, Selloni A, Sun C (2016) Real-time observation of reconstruction dynamics on TiO2(001) surface under oxygen via an environmental transmission electron microscope. Nano Lett 16:132–137

    Article  CAS  Google Scholar 

  • Zhang W, Wang F, Rao Y, Jiang Y (2014) Novel sensing concept based on optical Tamm plasmon. Opt Express 22:14524–14529

    Article  CAS  Google Scholar 

  • Zhang C, Wu K, Giannini V, Li X (2017) Planar hot-electron photodetection with Tamm plasmons. ACS Nano 11:1719–1727

    Article  CAS  Google Scholar 

  • Zhang D, Qiu D, Chen Y et al (2019) Coupling of fluorophores in single nanoapertures with Tamm plasmon structures. J Phys Chem C 123:1413–1420

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, H., Xing, F. & Li, L. Plasmon-based optical sensors for high-sensitivity surface deformation detection of silver and gold. Appl Nanosci 10, 3939–3944 (2020). https://doi.org/10.1007/s13204-020-01496-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01496-7

Keywords

Navigation