Skip to main content
Log in

Simplicity of Augmentation Submodules for Transformation Monoids

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

For finite permutation groups, simplicity of the augmentation submodule is equivalent to 2-transitivity over the field of complex numbers. We note that this is not the case for transformation monoids. We characterize the finite transformation monoids whose augmentation submodules are simple for a field 𝔽 (assuming the answer is known for groups, which is the case for ℂ, ℝ, and ℚ) and provide many interesting and natural examples such as endomorphism monoids of connected simplicial complexes, posets, and graphs (the latter with simplicial mappings).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Almeida, J.: Finite semigroups and universal algebra, volume 3 of Series in Algebra. World Scientific Publishing Co., Inc., River Edge, NJ (1994). Translated from the 1992 Portuguese original and revised by the author

  2. Araújo, J., Cameron, P.J., Steinberg, B.: Between primitive and 2-transitive: synchronization and its friends. EMS Surv. Math. Sci. 4(2), 101–184 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Arnold, F., Steinberg, B.: Synchronizing groups and automata. Theoret. Comput. Sci. 359(1-3), 101–110 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Ayyer, A., Klee, S., Schilling, A.: Combinatorial Markov chains on linear extensions. J Algebraic Combin. 39(4), 853–881 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Ayyer, A., Schilling, A., Steinberg, B., Thiéry, N.: Directed nonabelian sandpile models on trees. Comm. Math. Phys. 335, 1065–1098 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Ayyer, A., Schilling, A., Steinberg, B., Thiéry, N.M.: Markov chains, \({\mathcal{R}}\)-trivial monoids and representation theory. Internat. J. Algebra Comput. 25(1-2), 169–231 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Ayyer, A., Steinberg, B.: Random walks on rings and modules. Algebraic Combinatorics, to appear (2017)

  8. Bamberg, J., Giudici, M., Liebeck, M.W., Praeger, C.E., Saxl, J.: The classification of almost simple \(\frac 32\)-transitive groups. Trans. Amer. Math. Soc. 365(8), 4257–4311 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Barmak, J.A.: Algebraic Topology of Finite Topological Spaces and Applications. Lecture Notes in Mathematics. Springer, Berlin (2011)

    MATH  Google Scholar 

  10. Béal, M.-P., Berlinkov, M.V., Perrin, D.: A quadratic upper bound on the size of a synchronizing word in one-cluster automata. Internat. J. Found Comput. Sci. 22(2), 277–288 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Berg, C., Bergeron, N., Bhargava, S., Saliola, F.: Primitive orthogonal idempotents for R-trivial monoids. J Algebra 348, 446–461 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata, Volume 129 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  13. Bidigare, P., Hanlon, P., Rockmore, D.: A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements. Duke. Math. J. 99(1), 135–174 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Bidigare, T.P.: Hyperplane arrangement face algebras and their associated Markov chains. ProQuest LLC, Ann Arbor, MI, 1997. Thesis (Ph.D.)–University of Michigan

  15. Björner, A.: Random Walks, Arrangements, Cell Complexes, Greedoids, and Self-Organizing Libraries. In: Building Bridges, Volume 19 of Bolyai Soc. Math. Stud., pp 165–203. Springer, Berlin (2008)

  16. Bondy, J.A., Murty, U.S.R.: Graph theory, volume 244 of Graduate Texts in Mathematics. Springer, New York (2008)

    Google Scholar 

  17. Brown, K.S.: Semigroups, rings, and Markov chains. J. Theoret. Probab. 13(3), 871–938 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Brown, K.S.: Semigroup and Ring Theoretical Methods in Probability. In: Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, Volume 40 of Fields Inst. Commun., pp 3–26. Amer. Math. Soc., Providence (2004)

  19. Brown, K.S., Diaconis, P.: Random walks and hyperplane arrangements. Ann. Probab. 26(4), 1813–1854 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Cameron, P.J: Permutation groups, volume 45 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  21. Černý, J.: A remark on homogeneous experiments with finite automata. Mat.-Fyz. Časopis Sloven. Akad. Vied 14, 208–216 (1964)

    MathSciNet  MATH  Google Scholar 

  22. Chung, F., Graham, R.: Edge flipping in graphs. Adv. in Appl. Math. 48(1), 37–63 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups. Vol. I Mathematical Surveys, vol. 7. American Mathematical Society, Providence (1961)

    MATH  Google Scholar 

  24. Denton, T.: A combinatorial formula for orthogonal idempotents in the 0-Hecke algebra of the symmetric group. Electron. J. Combin., 18(1):Research Paper 28, 20 pp (electronic) (2011)

  25. Denton, T., Hivert, F., Schilling, A., Thiéry, N.: On the representation theory of finite \(\mathcal {J}\)-trivial monoids. sem.́ Lothar. Combin., 64:Art.B64d 34 pp.(electronic) (2011)

  26. Diestel, R.: Graph Theory, Volume 173 of Graduate Texts in Mathematics, 5th edn. Springer, Berlin (2017)

    Google Scholar 

  27. Dixon, J.D.: Permutation representations and rational irreducibility. Bull. Austral. Math. Soc. 71(3), 493–503 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Dubuc, L.: Sur les automates circulaires et la conjecture de Černý. RAIRO Inform. Théor. Appl. 32(1-3), 21–34 (1998)

    MathSciNet  Google Scholar 

  29. Eilenberg, S.: Automata, languages, and machines, vol. A. Academic Press, New York (1974). Pure and Applied Mathematics, Vol. 58

    MATH  Google Scholar 

  30. Green, J.A.: On the structure of semigroups. Ann. of Math. (2) 54, 163–172 (1951)

    MathSciNet  MATH  Google Scholar 

  31. Hoffman, K., Kunze, R.: Linear Algebra, 2nd edn. Prentice-Hall, Inc., Englewood Cliffs (1971)

    MATH  Google Scholar 

  32. Hsiao, S.K.: A semigroup approach to wreath-product extensions of Solomon’s descent algebras Electron. J. Combin. 16(1):Research Paper 21, 9 (2009)

  33. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theoret. Comput. Sci. 295(1-3), 223–232 (2003). Mathematical foundations of computer science (Mariánské Lázně, 2001)

    MathSciNet  MATH  Google Scholar 

  34. Komlos, J.: On the determinant of (0,1) matrices. Stud. Sci. Math. Hung. 2, 7–21 (1967)

    MathSciNet  MATH  Google Scholar 

  35. Malandro, M., Rockmore, D.: Fast Fourier transforms for the rook monoid. Trans. Amer. Math Soc. 362(2), 1009–1045 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Malandro, M.E.: Fast Fourier transforms for finite inverse semigroups. J. Algebra 324(2), 282–312 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Malandro, M.E.: Inverse semigroup spectral analysis for partially ranked data. Appl. Comput. Harmon. Anal. 35(1), 16–38 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Margolis, S., Saliola, F., Steinberg, B.: Cell complexes, poset topology and the representation theory of algebras arising in algebraic combinatorics and discrete geometry. Mem. Amer. Math. Soc., to appear (2015)

  39. Margolis, S., Saliola, F., Steinberg, B.: Combinatorial topology and the global dimension of algebras arising in combinatorics. J. Eur. Math. Soc. (JEMS) 17(12), 3037–3080 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Margolis, S., Steinberg, B.: The quiver of an algebra associated to the Mantaci-Reutenauer descent algebra and the homology of regular semigroups. Algebr. Represent. Theory 14(1), 131–159 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Margolis, S., Steinberg, B.: Quivers of monoids with basic algebras. Compos. Math. 148(5), 1516–1560 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Perrin, D.: Completely reducible sets. Internat. J. Algebra Comput. 23(4), 915–941 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Pin, J.-E.: Sur Un Cas Particulier De La Conjecture De Cerny. In: Automata, Languages and Programming (Fifth Internat. Colloq., Udine, 1978), Volume 62 of Lecture Notes in Comput. Sci., pp 345–352. Springer, Berlin (1978)

  44. Putcha, M.S.: Complex representations of finite monoids. II. Highest weight categories and quivers. J. Algebra 205(1), 53–76 (1998)

    MathSciNet  MATH  Google Scholar 

  45. Rhodes, J., Steinberg, B.: The q-Theory of Finite Semigroups. Springer Monographs in Mathematics. Springer, New York (2009)

    MATH  Google Scholar 

  46. Rhodes, J., Zalcstein, Y.: Elementary Representation and Character Theory of Finite Semigroups and Its Application. In: Monoids and Semigroups with Applications (Berkeley, CA, 1989), pp 334–367. World Sci. Publ., River Edge (1991)

  47. Rystsov, I.K.: Quasioptimal bound for the length of reset words for regular automata. Acta Cybernet. 12(2), 145–152 (1995)

    MathSciNet  MATH  Google Scholar 

  48. Saliola, F.: Eigenvectors for a random walk on a left-regular band. Adv. in Appl. Math. 48(2), 306–311 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Saliola, F.V.: The quiver of the semigroup algebra of a left regular band. Internat. J. Algebra Comput. 17(8), 1593–1610 (2007)

    MathSciNet  MATH  Google Scholar 

  50. Saliola, F.V.: On the quiver of the descent algebra. J. Algebra 320 (11), 3866–3894 (2008)

    MathSciNet  MATH  Google Scholar 

  51. Saliola, F.V.: The face semigroup algebra of a hyperplane arrangement. Canad. J. Math. 61(4), 904–929 (2009)

    MathSciNet  MATH  Google Scholar 

  52. Solomon, L.: Representations of the rook monoid. J. Algebra 256 (2), 309–342 (2002)

    MathSciNet  MATH  Google Scholar 

  53. Stein, I.: The representation theory of the monoid of all partial functions on a set and related monoids as EI-category algebras. J. Algebra 450, 549–569 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Steinberg, B.: A theory of transformation monoids: combinatorics and representation theory. Electron. J. Combin., 17(1):Research Paper 164, 56 (2010)

  55. Steinberg, B.: The averaging trick and the Černý conjecture. Internat. J. Found. Comput. Sci. 22(7), 1697–1706 (2011)

    MathSciNet  MATH  Google Scholar 

  56. Steinberg, B.: The Černý conjecture for one-cluster automata with prime length cycle. Theoret. Comput. Sci. 412(39), 5487–5491 (2011)

    MathSciNet  MATH  Google Scholar 

  57. Steinberg, B.: The global dimension of the full transformation monoid (with an appendix by V. Mazorchuk and B. Steinberg). Algebr. Represent. Theory 19(3), 731–747 (2016)

    MathSciNet  MATH  Google Scholar 

  58. Steinberg, B.: Representation Theory of Finite Monoids. Universitext. Springer , Cham (2016)

    MATH  Google Scholar 

  59. Volkov, M.V.: Language and Automata Theory and Applications Second International Conference, LATA 2008, Tarragona, Spain, March 13-19, 2008., volume 5196 of Lecture Notes in Computer Science. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) , pp 11–27. Springer, Berlin (2008)

Download references

Acknowledgments

The first author was partially supported by CMUP, which is financed by national funds through FCT - Fundação para a Ciência e a Tecnologia, I.P., under the project with reference UIDB/00144/2020. He also acknowledges FCT for a contract based on the “Lei do Emprego Cientfico” (DL 57/2016). The second author was supported by NSA MSP #H98230-16-1-0047 and PSC-CUNY. This work was performed while the first author was visiting the City College of New York. He thanks the College for its warm hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Steinberg.

Additional information

Presented by: Anne Schilling

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzamanian, M.H., Steinberg, B. Simplicity of Augmentation Submodules for Transformation Monoids. Algebr Represent Theor 24, 1029–1051 (2021). https://doi.org/10.1007/s10468-020-09977-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-020-09977-7

Keywords

Mathematics Subject Classification (2010)

Navigation