Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 6, 2020

Ternary plumbides ATPb2 (A = Ca, Sr, Ba, Eu; T = Rh, Pd, Pt) with distorted, lonsdaleite-related substructures of tetrahedrally connected lead atoms

  • Steffen Klenner , Judith Bönnighausen and Rainer Pöttgen EMAIL logo

Abstract

The plumbides CaTPb2 (T = Rh, Pd), EuTPb2 (T = Rh, Pd, Pt), SrTPb2 (T = Rh, Pd, Pt) and BaTPb2 (T = Pd, Pt) were obtained by direct reactions of the elements in sealed tantalum tubes in an induction furnace. The moisture sensitive polycrystalline samples were characterized by X-ray powder diffraction. They crystallize with the orthorhombic MgCuAl2-type structure, space group Cmcm. The structures of CaRhPb2 (a = 433.78(3), b = 1102.06(8), c = 798.43(6) pm, wR = 0.0285, 432 F2 values and 16 variables) and EuPdPb2 (a = 457.24(5), b = 1158.27(13), c = 775.73(8), wR = 0.0464, 464 F2 values and 16 variables) were refined from single crystal X-ray diffractometer data. The characteristic structural motif is the distorted tetrahedral substructure built up by the lead atoms with Pb–Pb distances of 326–327 pm in CaRhPb2 and of 315–345 pm in EuPdPb2. With increasing size of the alkaline earth (Eu) cation, the lead substructure becomes more anisotropic with a shift of the [TPb2] polyanions from three- to two-dimensional, leading to significantly increased moisture sensitivity. Temperature dependent magnetic susceptibility studies reveal Pauli paramagnetism for SrRhPb2, SrPtPb2, BaPdPb2 and BaPtPb2. EuRhPb2 and EuPdPb2 are Curie–Weiss paramagnets with stable divalent europium as is also evident from 151Eu Mössbauer spectra. EuRhPb2 is a ferromagnet with TC = 17.7(2) K, while EuPdPb2 orders antiferromagnetically at TN = 15.9 K. This is in agreement with the full magnetic hyperfine field splitting of the 151Eu Mössbauer spectra at T = 6 K.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Dedicated to: Professor Robert Glaum on the occasion of his 60th birthday.


Acknowledgments

We thank Dipl. -Ing. J. Kösters for the intensity data collections.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Adachi, G.-Y., Imanaka, N., Fuzhong, Z. Rare earth carbides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. North-Holland, Amsterdam, Vol. 15, 1991.10.1016/S0168-1273(05)80005-4Search in Google Scholar

2. Babizhetskyy, V., Kotur, B., Levytskyy, V., Michor, H. Alloy systems and compounds containing rare earth metals and carbon. In Handbook on the Physics and Chemistry of Rare Earths; Bünzli, J.-C. G., Pecharsky, V. K., Eds. Elsevier: North-Holland, Amsterdam, Vol. 52, Chapter 298, 2017; https://doi.org/10.1016/bs.hpcre.2017.09.001.Search in Google Scholar

3. Parthé, E., Chabot, B. Crystal structures and crystal chemistry of ternary rare earth-transition metal borides, silicides, and homologues. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. North-Holland, Amsterdam, Vol. 6, 1984; p. 113.10.1016/S0168-1273(84)06005-0Search in Google Scholar

4. Rogl, P. Phase equilibria in ternary and higher order systems with rare earth elements and silicon. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. North-Holland, Amsterdam, Vol. 7, 1984; p. 1.10.1016/S0168-1273(84)07004-5Search in Google Scholar

5. Salamakha, P. S., Sologub, O. L., Bodak, O. I. Ternary rare-earth-germanium systems. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. Elsevier Science: Amsterdam, Vol. 27, 1999; p. 1.10.1016/S0168-1273(99)27004-3Search in Google Scholar

6. Salamakha, P. S. Crystal structures and crystal chemistry of ternary rare-earth germanides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. Elsevier Science: Amsterdam, Vol. 27, 1999; p. 225.10.1016/S0168-1273(99)27005-5Search in Google Scholar

7. Skolozdra, R. V. Stannides of rare-earth and transition metals. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. Elsevier Science: Amsterdam, Vol. 24, 1997; p. 399.10.1016/S0168-1273(97)24009-2Search in Google Scholar

8. Pöttgen, R., Z. Naturforsch. 2006, 61b, 677.10.1515/znb-2006-0607Search in Google Scholar

9. Pöttgen, R., Rodewald, U. C., Rare Earth–Transition Metal–Plumbides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneider, K. A.Jr., Pecharsky, V. K., Bünzli, J.-C., Eds. Elsevier: Amsterdam, Vol. 38, 2008; p. 55.10.1016/S0168-1273(07)38002-1Search in Google Scholar

10. Kanatzidis, M. G., Pöttgen, R., Jeitschko, W. Angew. Chem. Int. Ed. 2005, 44, 6996.10.1002/anie.200462170Search in Google Scholar PubMed

11. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2019/20); ASM International®: Materials Park, Ohio (USA), 2019.Search in Google Scholar

12. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

13. Melnyk, G., Gulay, L. D., Tremel, W. J. Alloys Compd. 2012, 528, 70.10.1016/j.jallcom.2012.01.063Search in Google Scholar

14. Heletta, L., Klenner, S., Block, T., Pöttgen, R. Z. Naturforsch. 2017, 72b, 989.10.1515/znb-2017-0166Search in Google Scholar

15. Pöttgen, R., Arpe, P. E., Felser, C., Kußmann, D., Müllmann, R., Mosel, B. D., Künnen, B., Kotzyba, G. J. Solid State Chem. 1999, 145, 668.10.1006/jssc.1998.8280Search in Google Scholar

16. Fornasini, M. L., Merlo, F., Pani, M. Z. Kristallogr. NCS 2001, 216, 24.10.1524/ncrs.2001.216.14.24Search in Google Scholar

17. Venturini, G., Kamta, M., Mc Rae, E., Marêché, J. F., Malaman, B., Roques, B. Mater. Res. Bull. 1986, 21, 1203.10.1016/0025-5408(86)90048-6Search in Google Scholar

18. Movshovich, R., Lawrence, J. M., Hundley, M. F., Neumeier, J., Thompson, J. D., Lacerda, A., Fisk, Z. Phys. Rev. B 1996, 53, 5465.10.1103/PhysRevB.53.5465Search in Google Scholar

19. Pöttgen, R., Fugmann, A., Hoffmann, R.-D., Rodewald, U. Ch., Niepmann, D. Z. Naturforsch. 2000, 55b, 155.10.1515/znb-2000-0204Search in Google Scholar

20. Hermes, W., Rayaprol, S., Pöttgen, R. Z. Naturforsch. 2007, 62b, 901.10.1515/znb-2007-0705Search in Google Scholar

21. Hermes, W., Rodewald, U. Ch., Chevalier, B., Matar, S. F., Eyert, V., Pöttgen, R. Solid State Sci. 2010, 12, 929.10.1016/j.solidstatesciences.2010.01.029Search in Google Scholar

22. Heletta, L., Pöttgen, R. Z. Naturforsch. 2018, 73b, 251.10.1515/znb-2018-0012Search in Google Scholar

23. Heletta, L., Pöttgen, R. Z. Naturforsch. 2018, 73b, 1015.10.1515/znb-2018-0213Search in Google Scholar

24. Heletta, L., Pöttgen, R. Z. Naturforsch. 2019, 74b, 227.10.1515/znb-2018-0256Search in Google Scholar

25. Perlitz, H., Westgren, A. Ark. Kemi. Mineral. Geol. B 1943, 16, 1.Search in Google Scholar

26. Heying, B., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2005, 60b, 491.10.1515/znb-2005-0502Search in Google Scholar

27. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133.Search in Google Scholar

28. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143.10.1524/zkri.1999.214.3.143Search in Google Scholar

29. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73.10.1107/S0021889877012898Search in Google Scholar

30. Hoffmann, R.-D., Pöttgen, R., Landrum, G. A., Dronskowski, R., Künnen, B., Kotzyba, G. Z. Anorg. Allg. Chem. 1999, 625, 789.10.1002/(SICI)1521-3749(199905)625:5<789::AID-ZAAC789>3.0.CO;2-QSearch in Google Scholar

31. Hoffmann, R.-D., Kußmann, D., Rodewald, U. Ch., Pöttgen, R., Rosenhahn, C., Mosel, B. D. Z. Naturforsch. 1999, 54b, 709.10.1515/znb-1999-0602Search in Google Scholar

32. Pöttgen, R., Kußmann, D. Z. Anorg. Allg. Chem. 2001, 627, 55.10.1002/1521-3749(200101)627:1<55::AID-ZAAC55>3.0.CO;2-2Search in Google Scholar

33. Galadzhun, Y. V., Hoffmann, R.-D., Kotzyba, G., Künnen, B., Pöttgen, R. Eur. J. Inorg. Chem. 1999, 975.10.1002/(SICI)1099-0682(199906)1999:6<975::AID-EJIC975>3.0.CO;2-6Search in Google Scholar

34. Klenner, S., Heletta, L., Pöttgen, R. Dalton Trans. 2019, 48, 3648.10.1039/C9DT00035FSearch in Google Scholar

35. Kraft, R., Pöttgen, R. Z. Anorg. Allg. Chem. 2004, 630, 1738.10.1002/zaac.200470090Search in Google Scholar

36. Čurlík, I., Giovannini, M., Gastaldo, F., Strydom, A. M., Reiffers, M., Sereni, J. G. J. Phys.: Condens. Matter 2018, 30, 495802.10.1088/1361-648X/aae7aeSearch in Google Scholar

37. Hoffmann, R.-D., Rodewald, U. C., Pöttgen, R. Z. Naturforsch. 1999, 54b, 38.10.1515/znb-1999-0110Search in Google Scholar

38. Liu, S., Corbett, J. D. Inorg. Chem. 2003, 42, 4898.10.1021/ic030089kSearch in Google Scholar

39. Hoffmann, R.-D., Pöttgen, R. Chem. Eur. J. 2001, 7, 382.10.1002/1521-3765(20010119)7:2<382::AID-CHEM382>3.0.CO;2-ISearch in Google Scholar

40. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar

41. Long, G. J., Cranshaw, T. E, Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 2, 42.Search in Google Scholar

42. Brand, R. A. WinNormos for Igor6 (version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg, Germany, 2017.Search in Google Scholar

43. Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Z. Kristallogr. 2006, 221, 435.10.1524/zkri.2006.221.5-7.435Search in Google Scholar

44. Pöttgen, R., Hoffmann, R.-D., Möller, M. H., Kotzyba, G., Künnen, B., Rosenhahn, C., Mosel, B. D. J. Solid State Chem. 1999, 145, 174.10.1006/jssc.1999.8236Search in Google Scholar

45. Kußmann, D., Pöttgen, R. Z. Naturforsch. 2001, 56b, 446.10.1515/znb-2001-4-522Search in Google Scholar

46. Iandelli, A. Z. Anorg. Allg. Chem. 1964, 330, 221.10.1002/zaac.19643300315Search in Google Scholar

47. Wang, D., Yu, Y., Liu, X. J., Wang, C. P. Calphad Comput. Coupling Phase Diagrams Thermochem. 2013, 41, 20.10.1016/j.calphad.2013.01.007Search in Google Scholar

48. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

49. Stegemann, F., Block, T., Klenner, S., Zhang, Y., Fokwa, B. P. T., Timmer, A., Mönig, H., Doerenkamp, C., Eckert, H., Janka, O. Chem. Eur. J. 2019, 25, 10735.10.1002/chem.201901867Search in Google Scholar PubMed

50. Radzieowski, M., Stegemann, F., Doerenkamp, C., Matar, S. F., Eckert, H., Dosche, C., Wittstock, G., Janka, O. Inorg. Chem. 2019, 58, 7010.10.1021/acs.inorgchem.9b00648Search in Google Scholar PubMed

51. McGuire, T. R., Shafer, M. W. J. Appl. Phys. 1964, 35, 984.10.1063/1.1713568Search in Google Scholar

52. McWhan, B. D., Souers, P. C., Jura, G. Phys. Rev. 1966, 143, 385.10.1103/PhysRev.143.385Search in Google Scholar

53. Stroka, B., Wosnitza, J., Scheer, E., von Löhneysen, H., Park, W., Fischer, K. Z. Phys. Condens. Matter 1992, 89, 39.10.1007/BF01320827Search in Google Scholar

54. Lueken, H. Magnetochemie; B. G. Teubner Stuttgart: Leipzig, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

55. Pöttgen, R. J. Mater. Chem. 1996, 6, 63.10.1039/JM9960600063Search in Google Scholar

56. Klenner, S., Bönnighausen, J., Pöttgen, R. Z. Anorg. Allg. Chem. 2020, 646, in press, https://doi.org/10.1002/zaac.202000075.Search in Google Scholar

57. Müllmann, R., Mosel, B. D., Eckert, H., Kotzyba, G., Pöttgen, R. J. Solid State Chem. 1998, 137, 174.10.1006/jssc.1998.7750Search in Google Scholar

58. Müllmann, R., Ernet, U., Mosel, B. D., Eckert, H., Kremer, R. K., Hoffmann, R.-D., Pöttgen, R. J. Mater. Chem. 2001, 11, 1133.10.1039/b100055lSearch in Google Scholar

Received: 2020-04-02
Accepted: 2020-04-19
Published Online: 2020-07-06
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0046/html
Scroll to top button