Skip to main content
Log in

Loop spaces as Hilbert–Hartogs manifolds

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We prove that generalized loop spaces of Hartogs manifolds are Hilbert–Hartogs. We prove also that Hilbert–Hartogs manifolds possess a better extension properties than it is postulated in their definition. Finally, we give a list of examples of Hilbert–Hartogs manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, K., Suzuki, M., Yosida, M.: Continuation of holomorphic mappings with values in a complex Lie group. Pac. J. Math. 47, 1–4 (1973)

    Article  MathSciNet  Google Scholar 

  2. Anakkar M., Zagorodnuk A.: On Hilbert–Hartogs manifolds. Complex Var. Ell. Eq., to appear (2020)

  3. Behnke, H.: Zur Theorie der analytischen Funktionen mehrerer komplexen Veränderlichen. Der Kontinuitätssatz und die Regulärkonvexität. Math. Ann. 113, 392–397 (1937)

    Article  MathSciNet  Google Scholar 

  4. Bungart, L.: On analytic fibre bundles I. Holomorphic fibre bundles with infinite dimensional fibers. Topology 7(1), 55–68 (1968)

    Article  MathSciNet  Google Scholar 

  5. Chazal, F.: Un théorème de prolongement d’application méromorphes. Math. Ann. 320(2), 285–297 (2001)

    Article  MathSciNet  Google Scholar 

  6. Forstneric, F.: Manifolds of holomorphic mappings from strongly pseudoconvex domains. Asian J. Math. 11(1), 113–126 (2007)

    Article  MathSciNet  Google Scholar 

  7. Ivashkovich, S.: Spherical shells as obstructions for the extension of holomorphic mappings. J. Geom. Anal. 2, 231–371 (1992)

    MathSciNet  Google Scholar 

  8. Ivashkovich, S.: Extension properties of meromorphic mappings with values in non-Kähler manifolds. Ann. Math. 160, 795–837 (2004)

    Article  MathSciNet  Google Scholar 

  9. Ivashkovich, S., Shiffman, B.: Compact singularities of meromorphic mappings between complex \(3\)-dimensional manifolds. Math. Res. Lett. 7, 695–708 (2000)

    Article  MathSciNet  Google Scholar 

  10. Lempert, L.: Holomorphic functions on (generalized) loop spaces. Math. Proc. R. Ir. Acad. 104A(1), 35–46 (2004)

    Article  MathSciNet  Google Scholar 

  11. Lempert, L.: Analytic continuation in mapping spaces. Pure Appl. Math. Q. 6(4), 1051–1080 (2010)

    Article  MathSciNet  Google Scholar 

  12. Milnor, J.: Lectures on the \(h\)-Cobordism Theorem. Princeton University Press, Princeton (1965)

    MATH  Google Scholar 

  13. Mujica, J.: Complex Analysis in Banach Spaces. Mathematical Studies, vol. 120. North-Holland, Amsterdam (1985)

    MATH  Google Scholar 

  14. Narasimhan, R.: Analysis on Real and Complex Manifolds. North-Holland, Amsterdam (1968)

    MATH  Google Scholar 

  15. Royden, H.: The extension of regular holomorphic maps. Proc. Amer. Math. Soc. 43(2), 306–310 (1974)

    Article  MathSciNet  Google Scholar 

  16. Taylor, M.: Partial Differential Equations I. Basic Theory. Applied Mathematical Sciences, vol. 115, 2nd edn. Springer, New York (2011)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to our colleague Léa Blanc-Centi for useful discussions around the results of this paper. We would also like to thank the Referee of this paper who pointed to us a serious gap in its first version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ivashkovich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the Labex Cempi ANR-11-LABX-0007-01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anakkar, M., Ivashkovich, S. Loop spaces as Hilbert–Hartogs manifolds. Arch. Math. 115, 445–456 (2020). https://doi.org/10.1007/s00013-020-01485-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-020-01485-w

Keywords

Mathematics Subject Classification

Navigation