Skip to main content
Log in

MT2A Promotes Oxaliplatin Resistance in Colorectal Cancer Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We aimed to understand the molecular mechanism underlying the incidence of Oxaliplatin resistance in colorectal cancer. The Oxaliplatin-resistant (OR) HT29 colorectal cell line was established by long-term exposure to Oxaliplatin. Cell viability and proliferation were determined by the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide and direct counting assays, respectively. Transcript level of metallothionein 2A (MT2A) was measured by real-time polymerase chain reaction. Protein levels of MT2A, BRCA1-associated RING domain 1 (BARD1), BRCA1, and β-actin were quantified by immunoblotting. Direct interaction between MT2A with BARD1 and BRCA1 was analyzed by co-immunoprecipitation. Colocalization between of MT2A and BARD1 was determined by immunofluorescence. MT2A was upregulated in OR cells at both transcript and protein levels. Knockdown of MT2A in HT29 OR cells improved sensitivity to Oxaliplatin, while ectopic overexpression of MT2A conferred HT29 cells relative resistance to Oxaliplatin. We further demonstrated that MT2A interacted with and positively regulated BARD1/BRCA1 in colorectal cancer cells. BARD1 overexpression partially restored the compromised Oxaliplatin resistance elicited by MT2A deficiency in terms of both cell proliferation and viability. Our data highlighted the critical contributions of MT2A-BARD1/BRCA1 in Oxaliplatin resistance in colorectal cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dekker, E., Tanis, P. J., Vleugels, J. L. A., Kasi, P. M., & Wallace, M. B. (2019). Colorectal cancer. Lancet, 394, 1467–1480.

    Article  Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. A Cancer Journal of Clinicians, 69, 7–34.

    Article  Google Scholar 

  3. Obaro, A. E., Plumb, A. A., Fanshawe, T. R., Torres, U. S., Baldwin-Cleland, R., & Taylor, S. A., et al. (2018). Post-imaging colorectal cancer or interval cancer rates after CT colonography: a systematic review and meta-analysis. The Lancet Gastroenterology and Hepatology, 3, 326–336.

    Article  Google Scholar 

  4. Kuipers, E. J., & Lansdorp-Vogelaar, I. (2017). Colorectal cancer screening in Australia. Lancet Public Health, 2, e304–e305.

    Article  Google Scholar 

  5. Bopanna, S., Ananthakrishnan, A. N., Kedia, S., Yajnik, V., & Ahuja, V. (2017). Risk of colorectal cancer in Asian patients with ulcerative colitis: a systematic review and meta-analysis. The Lancet Gastroenterology and Hepatology, 2, 269–276.

    Article  Google Scholar 

  6. Thavanesan, N., Abdalkoddus, M., Yao, C., Lai, C. W., & Stubbs, B. M. (2018). Management of patients with incurable colorectal cancer: a retrospective audit. Colorectal Disease, 20, 864–872.

    Article  CAS  Google Scholar 

  7. Graham, J., Mushin, M., & Kirkpatrick, P. (2004). Oxaliplatin. Nature Reviews Drug Discovery, 3, 11–12.

    Article  CAS  Google Scholar 

  8. Moertel, C. G. (1994). Chemotherapy for colorectal cancer. The New England Journal of Medicine, 330, 1136–1142.

    Article  CAS  Google Scholar 

  9. Kouroussis, C., Souglakos, J., Kakolyris, S., Mavroudis, D., Malamos, N., & Kalbakis, K., et al. (2001). Oxaliplatin in combination with infusional 5-fluorouracil and leucovorin every 2 weeks as first-line treatment in patients with advanced colorectal cancer: a phase II study. Oncology, 61, 36–41.

    Article  CAS  Google Scholar 

  10. Hsu, H. H., Chen, M. C., Baskaran, R., Lin, Y. M., Day, C. H., & Lin, Y. J., et al. (2018). Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. Journal of Cellular Physiology, 233, 5458–5467.

    Article  CAS  Google Scholar 

  11. Buss, I., Hamacher, A., Sarin, N., Kassack, M. U., & Kalayda, G. V. (2018). Relevance of copper transporter 1 and organic cation transporters 1-3 for oxaliplatin uptake and drug resistance in colorectal cancer cells. Metallomics, 10, 414–425.

    Article  CAS  Google Scholar 

  12. Hu, H., Yang, L., Li, L., & Zeng, C. (2018). Long non-coding RNA KCNQ1OT1 modulates oxaliplatin resistance in hepatocellular carcinoma through miR-7-5p/ ABCC1 axis. Biochemical and Biophysical Research Communications, 503, 2400–2406.

    Article  CAS  Google Scholar 

  13. Shen, L., Dong, X., Wang, Y., Qiu, L., Peng, F., & Luo, Z. (2018). beta3GnT8 regulates oxaliplatin resistance by altering integrin beta1 glycosylation in colon cancer cells. Oncology Reports, 39, 2006–2014.

    CAS  PubMed  Google Scholar 

  14. Zhang, Y., Huang, L., Shi, H., Chen, H., Tao, J., & Shen, R., et al. (2018). Ursolic acid enhances the therapeutic effects of oxaliplatin in colorectal cancer by inhibition of drug resistance. Cancer Science, 109, 94–102.

    Article  CAS  Google Scholar 

  15. Liu, Y., Zheng, X., Yu, Q., Wang, H., Tan, F., & Zhu, Q., et al. (2016). Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin. Science Translational Medicine, 8, 348ra397.

    Google Scholar 

  16. Ivanova, T., Zouridis, H., Wu, Y., Cheng, L. L., Tan, I. B., & Gopalakrishnan, V., et al. (2013). Integrated epigenomics identifies BMP4 as a modulator of cisplatin sensitivity in gastric cancer. Gut, 62, 22–33.

    Article  CAS  Google Scholar 

  17. Roodhart, J. M., Daenen, L. G., Stigter, E. C., Prins, H. J., Gerrits, J., & Houthuijzen, J. M., et al. (2011). Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell, 20, 370–383.

    Article  CAS  Google Scholar 

  18. Lim, D., Jocelyn, K. M., Yip, G. W., & Bay, B. H. (2009). Silencing the Metallothionein-2A gene inhibits cell cycle progression from G1- to S-phase involving ATM and cdc25A signaling in breast cancer cells. Cancer Letters, 276, 109–117.

    Article  CAS  Google Scholar 

  19. Yamasaki, M., Nomura, T., Sato, F., & Mimata, H. (2007). Metallothionein is up-regulated under hypoxia and promotes the survival of human prostate cancer cells. Oncology Reports, 18, 1145–1153.

    CAS  PubMed  Google Scholar 

  20. Liu, D., Wang, M., Tian, T., Wang, X. J., Kang, H. F., & Jin, T. B., et al. (2017). Genetic polymorphisms (rs10636 and rs28366003) in metallothionein 2A increase breast cancer risk in Chinese Han population. Aging, 9, 547–555.

    Article  Google Scholar 

  21. Pan, Y., Lin, S., Xing, R., Zhu, M., Lin, B., & Cui, J., et al. (2016). Epigenetic upregulation of Metallothionein 2A by diallyl trisulfide enhances chemosensitivity of human gastric cancer cells to docetaxel through attenuating NF-kappaB activation. Antioxidants & Redox Signaling, 24, 839–854.

    Article  CAS  Google Scholar 

  22. Kim, H. G., Kim, J. Y., Han, E. H., Hwang, Y. P., Choi, J. H., & Park, B. H., et al. (2011). Metallothionein-2A overexpression increases the expression of matrix metalloproteinase-9 and invasion of breast cancer cells. FEBS Letters, 585, 421–428.

    Article  CAS  Google Scholar 

  23. Lee, H. S., Lee, S. Y., Ha, H. L., Han, D. C., Han, J. M., & Jeong, T. S., et al. (2009). 2’-Benzoyloxycinnamaldehyde inhibits tumor growth in H-ras12V transgenic mice via downregulation of metallothionein. Nutrition and Cancer, 61, 723–734.

    Article  CAS  Google Scholar 

  24. Yap, X., Tan, H. Y., Huang, J., Lai, Y., Yip, G. W., & Tan, P. H., et al. (2009). Over-expression of metallothionein predicts chemoresistance in breast cancer. The Journal of Pathology, 217, 563–570.

    Article  CAS  Google Scholar 

  25. El Khoury, F., Corcos, L., Durand, S., Simon, B., & Le Jossic-Corcos, C. (2016). Acquisition of anticancer drug resistance is partially associated with cancer stemness in human colon cancer cells. International Journal of Oncology, 49, 2558–2568.

    Article  CAS  Google Scholar 

  26. Woods, N. T., Mesquita, R. D., Sweet, M., Carvalho, M. A., Li, X., & Liu, Y., et al. (2012). Charting the landscape of tandem BRCT domain-mediated protein interactions. Science Signaling, 5, rs6.

    Article  Google Scholar 

  27. Xia, Y., Pao, G. M., Chen, H. W., Verma, I. M., & Hunter, T. (2003). Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. Journal of Biological Chemistry, 278, 5255–5263.

    Article  CAS  Google Scholar 

  28. Wu, J. Y., Vlastos, A. T., Pelte, M. F., Caligo, M. A., Bianco, A., & Krause, K. H., et al. (2006). Aberrant expression of BARD1 in breast and ovarian cancers with poor prognosis. International Journal of Cancer, 118, 1215–1226.

    Article  CAS  Google Scholar 

  29. Liao, Y., Yuan, S., Chen, X., Zhu, P., Li, J., & Qin, L., et al. (2017). Up-regulation of BRCA1-associated RING Domain 1 promotes hepatocellular carcinoma progression by targeting Akt signaling. Scientific Reports, 7, 7649.

    Article  Google Scholar 

  30. Sporn, J. C., Hothorn, T., & Jung, B. (2011). BARD1 expression predicts outcome in colon cancer. Clinical Cancer Research, 17, 5451–5462.

    Article  CAS  Google Scholar 

  31. Irminger-Finger, I. (2010). BARD1, a possible biomarker for breast and ovarian cancer. Gynecologic Oncology, 117, 211–215.

    Article  CAS  Google Scholar 

  32. Zhu, Y., Liu, Y., Zhang, C., Chu, J., Wu, Y., & Li, Y., et al. (2018). Tamoxifen-resistant breast cancer cells are resistant to DNA-damaging chemotherapy because of upregulated BARD1 and BRCA1. Nature Communications, 9, 1595.

    Article  Google Scholar 

Download references

Funding

This study was supported by Science and Technology Fund of Tianjin Health Bureau (2014KZ123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Zhang, G. & Li, W. MT2A Promotes Oxaliplatin Resistance in Colorectal Cancer Cells. Cell Biochem Biophys 78, 475–482 (2020). https://doi.org/10.1007/s12013-020-00930-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00930-5

Keywords

Navigation